

 JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

LAB MANUAL

CSL 331 SYSTEM SOFTWARE AND

MICROPROCESSORS LAB

(Regulation:2019)

 JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

CSL 331 SYSTEM SOFTWARE AND MICROPROCESSORS LAB

COURSE INFORMATION SHEET

PROGRAMME: COMPUTER SCIENCE AND
ENGINEERING

DEGREE: BTECH

COURSE: SYSTEM SOFTWARE AND
MICROPROCESSORS LAB

SEMESTER: V CREDITS: 3

COURSE CODE: CSL 331

REGULATION:2019

COURSE TYPE: PRACTICAL

COURSEAREA/DOMAIN: COMPUTER

SECURITY

CONTACT HOURS: 3 hours/week.

CORRESPONDING LAB COURSE CODE (IF
ANY):NIL

LAB COURSE NAME: SYSTEM SOFTWARE AND

MICROPROCESSORS LAB

SYLLABUS:

LIST OF EXPERIMENTS

1. Simulate the following non-preemptive CPU scheduling algorithms to find

turnaround time and waiting time.

 a) FCFS b) SJF c) Round Robin (pre-emptive) d) Priority

2. Implement the banker’s algorithm for deadlock avoidance.

3. Write a program to simulate the working of the dining philosopher’s

 problem

4. Simulate the following disk scheduling algorithms.

 a) FCFS b) SCAN c) C-SCAN

5. Implement Pass one of a Two Pass assembler.

6. Implement pass two of a Two Pass assembler.

7. Implement a Symbol Table with suitable hashing.

8. Implement an absolute loader

9. Implementation of decimal arithmetic (16 and 32 bit) operations.

10. Implementation of simple decimal arithmetic and bit manipulation operations.

11. Implementation of searching and sorting of 16-bit numbers.

12.Interfacing with stepper motor - Rotate through any given sequence.

 JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

COURSE OUTCOMES:

Sl No

DESCRIPTION

Blooms’

Taxonomy

Level

C307.1 Develop 8086 programs and execute it using a
microprocessor kit.

LEVEL 2

C307.2 Apply First Come First Served, Shortest Job First, Round Robin

and Priority based CPU Scheduling Algorithms.

LEVEL 3

C307.3 Develop and execute programs to interface stepper motor, 8255,

8279 and digital to analog converters with 8086 trainer kit.

LEVEL 2

C307.4 Implement and execute different scheduling and paging

algorithms in OS.

LEVEL 3

C307.5
Design and implement assemblers, Loaders and
macroprocessors. LEVEL 3

Subject Code PO1 PO2 PO3
PO

4
PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

C307.1 3 3 3 2 3 2 3 3 2 3 3 3 2

C307.2 3 3 3 2 3 2 3 3 2 3 3 3 2

C307.3
3 3 3 2 3 2 3 3 2 3 3 3 2

C307.4 3 3 3 2 3 2 3 3 2 3 3 3 2

C307.5
3 3 3 2 3 2 3 3 2 3 3 3 2

 JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

Course

Outcome

Number

Mapped with

POs

Justification

CO1 PO1 (High) It involves strong knowledge in Illustrating the use of systems calls

and Implement Process Creation and Inter Process Communication

in Operating Systems

PO2 (High) It provides strong idea Using concepts of computer engineering

students can identify the concept of Inter Process Communication

in Operating Systems

PO3 (High) It involves providing Strong idea in in designing Process and

establishing inter process communication

PO4 (Medium) It involves only fair knowledge to provide valid conclusions for

investigating complex problems in process creation and

implementation

PO5 (High) It involves Strong idea in applying appropriate Techniques for creating

processes developing software systems

PO8 (Medium) It involves providing fair idea in applying ethics ethical principles and

commit to professional ethics and responsibilities while handling

processes in operating systems

PO9 (High)
It involves strong knowledge in Functioning effectively as an

individual, and as a member or leader in multi-disciplinary teams,

and strive to achieve common goals to study concepts of inter

process communication.

 JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

PO10 (High) It involves strong knowledge in Communicating effectively with

engineering community and society and be able to comprehend and

write effective reports and documents, make effective presentations

and give and receive clear instructions in process creation and

management

PO11(Medium)
It involves Fair knowledge in Applying the Engineering and

Management principles to one’s own work, as a member and leader

in a team, to manage projects in Multidisciplinary Teams involving

process management concepts.

PO12 (High) This course outcome provides Strong chance of lifelong learning to

cope up with the emerging Technologies in area of process

management in operating systems

CO2 PO1 (High) It involves strong knowledge in computer science to solve

problems related to implementation of CPU scheduling algorithms

PO2 (High) It provides strong idea Using concepts of computer engineering

students can identify the CPU scheduling algorithms

PO3 (High) It involves providing Strong idea in in designing process scheduling

algorithms

PO4 (Medium) It involves only fair knowledge to provide valid conclusions for

investigating complex problems in CPU scheduling algorithms using

research-based knowledge and research methods

PO5 (High) It involves Strong idea in applying appropriate Techniques for CPU

scheduling

PO8 (Medium) It involves providing fair idea in applying ethics ethical principles

and commit to professional ethics and responsibilities while

scheduling processes in operating systems

 JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

PO9 (High)
It involves strong knowledge in Functioning effectively as an

individual, and as a member or leader in multi-disciplinary teams,

and strive to achieve common goals to study concepts of process

scheduling

PO10 (High) It involves strong knowledge in Communicating effectively with

engineering community and society and be able to comprehend and

write effective reports and documents, make effective presentations

and give and receive clear instructions in process scheduling

PO11(Medium) It involves Fair knowledge in Applying the Engineering and

Management principles to one’s own work, as a member and leader

in a team, to manage projects in Multidisciplinary Teams involving

process scheduling concepts.

PO12 (High) This course outcome provides Strong chance of lifelong learning to

cope up with the emerging Technologies in area of process

scheduling

CO3

PO1 (High) It involves strong knowledge in computer science to solve problems

related to Memory allocation methods and Page Replacement

Algorithms.

PO2 (High) It provides strong idea Using concepts of computer engineering

students can identify the concept of Memory allocation methods

and Page Replacement Algorithms.

PO3 (High) It involves providing strong idea in in designing page replacement

algorithm

PO4 (Medium) It involves only fair knowledge to provide valid conclusions for

investigating complex problems in memory allocation

PO5 (High) It involves Strong idea in applying appropriate Techniques for

memory allocation scheduling

 JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

PO8 (Medium) It involves providing fair idea in applying ethics ethical principles

and commit to professional ethics and responsibilities while in

operating systems

PO9 (High) It involves strong knowledge in Functioning effectively as an

individual, and as a member or leader in multi-disciplinary teams,

and strive to achieve common goals to study concepts of page

replacement

PO10 (High) It involves strong knowledge in Communicating effectively with

engineering community and society and be able to comprehend and

write effective reports and documents, make effective presentations

and give and receive clear instructions in memory allocation

PO11(Medium) It involves Fair knowledge in Applying the Engineering and

Management principles to one’s own work, as a member and leader

in a team, to manage projects in Multidisciplinary Teams involving

memory allocation techniques

PO12 (High) This course outcome provides Strong chance of lifelong learning to

cope up with the emerging Technologies in area of memory

management

CO4 PO1 (High) It involves strong knowledge in computer science to solve problems

related to Deadlock Detection and Deadlock Avoidance in Operating

Systems.

PO2 (High) It provides strong idea Using concepts of computer engineering

students can identify the concept of Deadlock Detection and

Deadlock Avoidance in Operating Systems.

PO3 (High) It involves providing strong idea in Deadlock Detection and

Deadlock Avoidance in Operating Systems.

 JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

PO4 (Medium) It involves only fair knowledge to provide valid conclusions for

investigating complex problems in Deadlock Detection and

Deadlock Avoidance in Operating Systems using research-based

knowledge and research methods

PO5 (High) It involves Strong idea in applying appropriate Techniques for

deadlock detection and avoidance

PO8 (Medium) It involves providing fair idea in applying ethics ethical principles

and commit to professional ethics and responsibilities in Deadlock

Detection and Deadlock Avoidance in Operating Systems

PO9 (High) It involves strong knowledge in Functioning effectively as an

individual, and as a member or leader in multi-disciplinary teams,

and strive to achieve common goals to study concepts of deadlock

avoidance

PO10 (High) It involves strong knowledge in Communicating effectively with

engineering community and society and be able to comprehend and

write effective reports and documents, make effective presentations

and give and receive clear instructions in deadlock avoidance and

recovery

PO11(Medium) It involves Fair knowledge in Applying the Engineering and

Management principles to one’s own work, as a member and leader

in a team, to manage projects in Multidisciplinary Teams involving

handling deadlock

PO12 (High) This course outcome provides Strong chance of lifelong learning to

cope up with the emerging Technologies in area of handling

deadlocks

CO5 PO1 (High) It involves strong knowledge in computer science to solve

problems related to Storage Management and Disk Scheduling in

Operating Systems

 JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

PO2 (High) It provides strong idea Using concepts of computer engineering

students can identify the concept of Storage Management and

Disk Scheduling in Operating Systems.

PO3 (High) It involves providing Strong idea in in designing disk scheduling

algorithms

PO4 (Medium) It involves only fair knowledge to provide valid conclusions for

investigating complex problems in Storage Management and Disk

Scheduling in Operating Systems using research-based knowledge

and research methods

PO5 (High) It involves strong knowledge in Functioning effectively as an

individual, and as a member or leader in multi-disciplinary teams,

and strive to achieve common goals to study concepts of storage

management

PO8 (Medium) It involves providing fair idea in applying ethics ethical principles

and commit to professional ethics and responsibilities in storage

management Operating Systems

PO9 (High) It involves strong knowledge in Functioning effectively as an

individual, and as a member or leader in multi-disciplinary teams,

and strive to achieve common goals to study concepts of storage

management

PO10 (High) It involves strong knowledge in Communicating effectively with

engineering community and society and be able to comprehend and

write effective reports and documents, make effective presentations

and give and receive clear instructions in Storage Management and

Disk Scheduling in Operating Systems

PO11(Medium) It involves Fair knowledge in Applying the Engineering and

Management principles to one’s own work, as a member and leader

in a team, to manage projects in Multidisciplinary Teams involving

storage management

 JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

PO12 (High) This course outcome provides Strong chance of lifelong learning to

cope up with the emerging Technologies in area of storage

management in operating systems

Course

Outcome

Number

Mapped with

PSOs

Justification

CO1 PSO1(High) It involves Strong knowledge in analyzing various process

management schemes

PSO2(High) It involves Strong idea to Analyze and design various methodologies

for developing high quality System Software Tools using the concepts

of process management

 PSO3

(Medium)
It involves fair Ability to Apply Knowledge for developing Codes and

integrating hardware/software products in the domains of Big Data

Analytics, Web Applications and Mobile Apps incorporating the

concepts of inter process communication

CO2 PSO1(High) It involves Strong knowledge in analyzing various process scheduling

techniques

PSO2(High) It involves Strong idea to Analyze and design various process

scheduling techniques for developing high quality System Software

Tools using virtualization

PSO3

(Medium)
It involves fair Ability to Apply Knowledge for developing Codes and

integrating hardware/software products in the domains of Big Data

Analytics, Web Applications and Mobile Apps incorporating the

concepts of inter process scheduling techniques

 JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

CO3 PSO1(High) It involves Strong knowledge in analyzing various memory allocation

techniques

PSO2(High) It involves Strong idea to Analyze and design various methodologies

for developing high quality System Software Tools using page

replacement techniques

PSO3

(Medium)
It involves fair Ability to Apply Knowledge for developing Codes and

integrating hardware/software products in the domains of Big Data

Analytics, Web Applications and Mobile Apps incorporating the

concepts of page replacement techniques

CO4 PSO1(High) It involves Strong knowledge in analyzing various virtualization

structures

PSO2(High) It involves Strong idea to Analyze and design various methodologies

for developing high quality System Software Tools using conceptsof

deadlock management

PSO3

(Medium)
It involves fair Ability to Apply Knowledge for developing Codes and

integrating hardware/software products in the domains of Big Data

Analytics, Web Applications and Mobile Apps incorporating the

concepts of deadlocks

CO5 PSO1(High) It involves Strong knowledge in analyzing various disk scheduling

algorithms

PSO2(High) It involves Strong idea to Analyze and design various methodologies

for developing high quality System Software Tools using concepts of

strage management

 JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY

JAWHAR GARDENS, LAKKIDI, MAGALAM (PO), PALAKKAD

PSO3

(Medium)
It involves fair Ability to Apply Knowledge for developing Codes and

integrating hardware/software products in the domains of Big Data

Analytics, Web Applications and Mobile Apps incorporating the

concepts of storge management

ASSESSMENT METHODOLOGIES-INDIRECT

☑ ASSESSMENT OF COURSE OUTCOMES (BY

FEEDBACK, ONCE)

☑ STUDENT FEEDBACK ON FACULTY
(TWICE)

☑ ASSESSMENT OF MINI/MAJOR PROJECTS
BY EXT.

EXPERTS

☐ OTHERS

Prepared by Approved by

Ms. Sreekala R Dr. U Vijay Sankar

Assistant Professor, CSE, JCET (HOD, CSE, JCET)

13

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

INTRODUCTION TO OPERATING SYSTEMS

An Operating System is a program that manages the Computer hardware. It controls and

coordinates the use of the hardware among the various application programs for the various users.

A Process is a program in execution. As a process executes, it changes state

 New: The process is being created

 Running: Instructions are being executed

 Waiting: The process is waiting for some event to occur

 Ready: The process is waiting to be assigned to a process

 Terminated : The process has finished execution

Apart from the program code, it includes the current activity represented by

 Program Counter,

 Contents of Processor registers,

 Process Stack which contains temporary data like function parameters, return

addresses and local variables

 Data section which contains global variables

 Heap for dynamic memory allocation

A Multi-programmed system can have many processes running simultaneously with the CPU

multiplexed among them. By switching the CPU between the processes, the OS can make the

computer more productive. There is Process Scheduler which selects the process among many

processes that are ready, for program execution on the CPU. Switching the CPU to another process

requires performing a state save of the current process and a state restore of new process, this is

Context Switch.

Scheduling Algorithms

CPU Scheduler can select processes from ready queue based on various scheduling

algorithms. Different scheduling algorithms have different properties, and the choice of a particular

algorithm may favour one class of processes over another. The scheduling criteria include

 CPU utilization:

 Throughput: The number of processes that are completed per unit time.

 Waiting time: The sum of periods spent waiting in ready queue.

 Turnaround time: The interval between the time of submission of process to the time

of completion.

 Response time: The time from submission of a request until the first response is produced.

14

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

The different scheduling algorithms are

1. FCFS: First Come First Serve Scheduling

 It is the simplest algorithm to implement.

 The process with the minimal arrival time will get the CPU first.

 The lesser the arrival time, the sooner will the process gets the CPU.

 It is the non-pre-emptive type of scheduling.

 The Turnaround time and the waiting time are calculated by using the following formula.

Turn Around Time = Completion Time - Arrival Time

 Waiting Time = Turnaround time - Burst Time

Avg Waiting Time=31/5

2. SJF: Shortest Job First Scheduling

 The job with the shortest burst time will get the CPU first.

 The lesser the burst time, the sooner will the process get the CPU.

 It is the non-pre-emptive type of scheduling.

 However, it is very difficult to predict the burst time needed for a process hence this

algorithm is very difficult to implement in the system.

 In the following example, there are five jobs named as P1, P2, P3, P4 and P5. Their arrival

time and burst time are given in the table below.

Process

ID

Arrival

Time

Burst

Time

Completion

Time

Turn

Around

Time

Waiting

Time

0 0 2 2 2 0

1 1 6 8 7 1

2 2 4 12 8 4

3 3 9 21 18 9

4 4 12 33 29 17

Process

ID

Arrival

Time

Burst

Time

Completion

Time

Turn

Around

Time

Waiting

Time

15

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Since, No Process

arrives at time 0

hence; there will be an empty slot in the Gantt chart from time 0 to 1 (the time at which the first

process arrives)

.

 According to the algorithm, the OS schedules the process which is having the lowest burst

time among the available processes in the ready queue.

 Till now, we have only one process in the ready queue hence the scheduler will schedule this

to the processor no matter what is its burst time.

 This will be executed till 8 units of time.

 Till then we have three more processes arrived in the ready queue hence the scheduler will

choose the process with the lowest burst time.

 Among the processes given in the table, P3 will be executed next since it is having the lowest

burst time among all the available processes.

Avg Waiting Time = 27/5

3. SRTF: Shortest Remaining Time First Scheduling

 It is the pre-emptive form of SJF. In this algorithm, the OS schedules the Job according to

the remaining time of the execution

4. Priority Scheduling

 In this algorithm, the priority will be assigned to each of the processes.

 The higher the priority, the sooner will the process get the CPU.

 If the priority of the two processes is same then they will be scheduled according to their

arrival time.

5. Round Robin Scheduling

 In the Round Robin scheduling algorithm, the OS defines a time quantum (slice).

 All the processes will get executed in the cyclic way.

 Each of the process will get the CPU for a small amount of time (called time quantum) and

then get back to the ready queue to wait for its next turn. It is a pre-emptive type of

scheduling.

1 1 7 8 7 0

2 3 3 13 10 7

3 6 2 10 4 2

4 7 10 31 24 14

5 9 8 21 12 4

16

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

6. Multilevel Queue Scheduling

 A multi-level queue scheduling algorithm partitions the ready queue into several separate

queues.

 The processes are permanently assigned to one queue, generally based on some property of

the process, such as memory size, process priority, or process type.

 Each queue has its own scheduling algorithm.

7. Multilevel Feedback Queue Scheduling

 Multilevel feedback queue scheduling, however, allows a process to move between

queues.

 The idea is to separate processes with different CPU-burst characteristics.

 If a process uses too much CPU time, it will be moved to a lower-priority queue.

 Similarly, a process that waits too long in a lower-priority queue may be moved to a

higher-priority queue.

 This form of aging prevents starvation.

17

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.1

CPU SCHEDULING

AIM

Similate the following non pre-emptive CPU scheduling algorithms to find turnaround time and

waiting tme.

a). FCFS

b). SJF

c). Priority

d). Round Robin (Pre-emptive)

FCFS (First Come First Serve)

PROGRAM

#include<stdio.h>

void main()

{

 int i=0,j=0,b[i],g[20],p[20],w[20],t[20],a[20],n=0,m;

 float avgw=0,avgt=0;

 printf("Enter the number of process : ");

 scanf("%d",&n);

 for(i=0;i<n;i++)

 {

 printf("Process ID : ");

 scanf("%d",&p[i]);

 printf("Burst Time : ");

 scanf("%d",&b[i]);

 printf("Arrival Time: ");

 scanf("%d",&a[i]);

 }

 int temp=0;

 for(i=0;i<n-1;i++)

 {

 for(j=0;j<n-1;j++)

 {

 if(a[j]>a[j+1])

 {

18

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 temp=a[j];

 a[j]=a[j+1];

 a[j+1]=temp;

 temp=b[j];

 b[j]=b[j+1];

 b[j+1]=temp;

 temp=p[j];

 p[j]=p[j+1];

 p[j+1]=temp;

 }

 }

 }

 g[0]=0;

 for(i=0;i<=n;i++)

 g[i+1]=g[i]+b[i];

 for(i=0;i<n;i++)

 {

 t[i]=g[i+1]-a[i];

 w[i]=t[i]-b[i];

 avgw+=w[i];

 avgt+=t[i];

 }

 avgw=avgw/n;

 avgt=avgt/n;

printf("pid\tarrivalT\tBrustT\tCompletionT\tWaitingtime\tTurnaroundTi\n");

 for(i=0;i<n;i++)

 {

 printf("%d\t%d\t%d\t%d\t\t%d\t\t\t%d\n",p[i],a[i],b[i],g[i+1],w[i],t[i]);

 }

 printf("\nAverage waiting time %f",avgw);

 printf("\nAverage turnarround time %f",avgt);

}

OUTPUT 1

Enter the number of process : 5

Process ID : 1

Burst Time : 4

Arrival Time: 0

Process ID : 2

19

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Burst Time : 3

Arrival Time: 1

Process ID : 3

Burst Time : 1

Arrival Time: 2

Process ID : 4

Burst Time : 2

Arrival Time: 3

Process ID : 5

Burst Time : 5

Arrival Time: 4

pid arrivalT BrustT CompletionT Waitingtime TurnaroundTi

1 0 4 4 0 4

2 1 3 7 3 6

3 2 1 8 5 6

4 3 2 10 5 7

5 4 5 15 6 11

Average waiting time 3.800000

Average turnaround time 6.800000

OUTPUT 2

Enter the number of process : 3

Process ID : 1

Burst Time : 24

Arrival Time: 0

Process ID : 2

Burst Time : 3

Arrival Time: 0

Process ID : 3

Burst Time : 3

Arrival Time: 0

pid arrivalT BrustT CompletionT Waitingtime TurnaroundTi

1 0 24 24 0 24

2 0 3 27 24 27

3 0 3 30 27 30

Average waiting time 17.000000

Average turnaround time 27.000000

20

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

OUTPUT 3

Enter the number of process : 3

Process ID : 1

Burst Time : 24

Arrival Time: 0

Process ID : 2

Burst Time : 3

Arrival Time: 2

Process ID : 3

Burst Time : 3

Arrival Time: 3

pid arrivalT BurstT CompletionT Waitingtime TurnaroundTi

1 0 24 24 0 24

2 2 3 27 22 25

3 3 3 30 24 27

Average waiting time 15.333333

Average turnaround time 25.333334

SJF (Shortest Job First)

PROGRAM

#include<stdio.h>

void main()

{

 int i=0,j=0,p[i],b[i],g[20],w[20],t[20],a[20],n=0,m;

 int k=1,min=0,btime=0;

 float avgw=0,avgt=0;

 printf("Enter the number of process : ");

 scanf("%d",&n);

 for(i=0;i<n;i++)

 {

 printf("\nProcess id : ");

 scanf("%d",&p[i]);

 printf("Burst Time : ");

 scanf("%d",&b[i]);

21

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 printf("Arrival Time: ");

 scanf("%d",&a[i]);

 }

//sort the jobs based on burst time.

 int temp=0;

 for(i=0;i<n-1;i++)

 {

 for(j=0;j<n-1;j++)

 {

 if(a[j]>a[j+1])

 {

 temp=a[j];

 a[j]=a[j+1];

 a[j+1]=temp;

 temp=b[j];

 b[j]=b[j+1];

 b[j+1]=temp;

 temp=p[j];

 p[j]=p[j+1];

 p[j+1]=temp;

 }

 }

 }

 for(i=0;i<n;i++)

 {

 btime=btime+b[i];

 min=b[k];

 for(j=k;j<n;j++)

 {

 if(btime >= a[j] && b[j]<min)

 {

 temp=a[j];

 a[j]=a[j-1];

 a[j-1]=temp;

 temp=b[j];

 b[j]=b[j-1];

 b[j-1]=temp;

22

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 temp=p[j];

 p[j]=p[j-1];

 p[j-1]=temp;

 }

 }

 k++;

 }

 g[0]=a[0];

 for(i=0;i<n;i++)

 {

 g[i+1]=g[i]+b[i];

 if(g[i]<a[i])

 g[i]=a[i];

 }

 for(i=0;i<n;i++)

 {

 t[i]=g[i+1]-a[i];

 w[i]=t[i]-b[i];

 avgw+=w[i];

 avgt+=t[i];

 }

 avgw=avgw/n;

 avgt=avgt/n;

 printf("pid\tBrustTime\tGantChart\tWaiting time\t\tTurnarround Time\n");

 for(i=0;i<n;i++)

 {

 printf(" %d\t %d\t\t%d-%d\t\t%d\t\t\t%d\n",p[i],b[i],g[i],g[i+1],w[i],t[i]);

 }

 printf("\nAverage waiting time %f",avgw);

 printf("\nAverage turnarround time %f\n",avgt);

}

OUTPUT 1

Enter the number of process : 5

Process id : 1

Burst Time : 7

Arrival Time: 0

Process id : 2

23

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Burst Time : 5

Arrival Time: 1

Process id : 3

Burst Time : 1

Arrival Time: 2

Process id : 4

Burst Time : 2

Arrival Time: 3

Process id : 5

Burst Time : 8

Arrival Time: 4

pid Brust Time GantChart Waiting time Turnarround Time

 8 7 0-7 0 7

 3 1 7-8 5 6

 4 2 8-10 5 7

 2 5 10-15 9 14

 5 8 15-23 11 19

Average waiting time 6.000000

Average turnaround time 10.600000

OUTPUT 2

Enter the number of process : 4

Process id : 1

Burst Time : 7

Arrival Time: 0

Process id : 2

Burst Time : 4

Arrival Time: 2

Process id : 3

Burst Time : 1

Arrival Time: 4

Process id : 4

24

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Burst Time : 4

Arrival Time: 5

pid Burst Time GantChart Waiting time Turnarround Time

 1 7 0-7 0 7

 3 1 7-8 3 4

 2 4 8-12 6 10

 4 4 12-16 7 11

Average waiting time 4.000000

Average turnaround time 8.000000

Priority Scheduling

#include<stdio.h>

int main()

{

 int burst_time[20], process[20], waiting_time[20], turnaround_time[20], priority[20];

 int i, j, limit, sum = 0, position, temp;

 float average_wait_time, average_turnaround_time;

 printf("Enter Total Number of Processes:\t");

 scanf("%d", &limit);

 printf("\nEnter Burst Time and Priority For %d Processes\n", limit);

 for(i = 0; i < limit; i++)

 {

 printf("\nProcess[%d]\n", i + 1);

 printf("Process Burst Time:\t");

 scanf("%d", &burst_time[i]);

 printf("Process Priority:\t");

 scanf("%d", &priority[i]);

 process[i] = i + 1;

 }

 for(i = 0; i < limit; i++)

 {

 position = i;

 for(j = i + 1; j < limit; j++)

 {

 if(priority[j] < priority[position])

 {

 position = j;

 }

 }

25

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 temp = priority[i];

 priority[i] = priority[position];

 priority[position] = temp;

 temp = burst_time[i];

 burst_time[i] = burst_time[position];

 burst_time[position] = temp;

 temp = process[i];

 process[i] = process[position];

 process[position] = temp;

 }

 waiting_time[0] = 0;

 for(i = 1; i < limit; i++)

 {

 waiting_time[i] = 0;

 for(j = 0; j < i; j++)

 {

 waiting_time[i] = waiting_time[i] + burst_time[j];

 }

 sum = sum + waiting_time[i];

 }

 average_wait_time = sum / limit;

 sum = 0;

 printf("\nProcess ID\t\tBurst Time\t Waiting Time\t Turnaround Time\n");

 for(i = 0; i < limit; i++)

 {

 turnaround_time[i] = burst_time[i] + waiting_time[i];

 sum = sum + turnaround_time[i];

 printf("\nProcess[%d]\t\t%d\t\t %d\t\t %d\n", process[i], burst_time[i], waiting_time[i],

turnaround_time[i]);

 }

 average_turnaround_time = sum / limit;

 printf("\nAverage Waiting Time:\t%f", average_wait_time);

 printf("\nAverage Turnaround Time:\t%f\n", average_turnaround_time);

 return 0;

}

OUTPUT

Enter the number of process : 3

Process id : 1

Burst Time : 15

Priority: 3

26

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Process id : 2

Burst Time : 10

Priority: 2

Process id : 3

Burst Time : 90

Priority: 1

pid Burst Time Waiting time Turnarround Time

 3 90 0 90

 2 10 90 100

 1 15 100 115

Average waiting time 63.000000

Average turnaround time 101.000000

Round Robin (pre-emptive)

#include<stdio.h>

 int main()

{

 int i, limit, total = 0, x, counter = 0, time_quantum;

 int wait_time = 0, turnaround_time = 0, arrival_time[10], burst_time[10], temp[10];

 float average_wait_time, average_turnaround_time;

 printf("\nEnter Total Number of Processes:\t");

 scanf("%d", &limit);

 x = limit;

 for(i = 0; i < limit; i++)

 {

 printf("\nEnter Details of Process[%d]\n", i + 1);

 printf("Arrival Time:\t");

 scanf("%d", &arrival_time[i]);

 printf("Burst Time:\t");

 scanf("%d", &burst_time[i]);

 temp[i] = burst_time[i];

 }

 printf("\nEnter Time Quantum:\t");

 scanf("%d", &time_quantum);

 printf("\nProcess ID\t\tBurst Time\t Turnaround Time\t Waiting Time\n");

 for(total = 0, i = 0; x != 0;)

 {

27

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 if(temp[i] <= time_quantum && temp[i] > 0)

 {

 total = total + temp[i];

 temp[i] = 0;

 counter = 1;

 }

 else if(temp[i] > 0)

 {

 temp[i] = temp[i] - time_quantum;

 total = total + time_quantum;

 }

 if(temp[i] == 0 && counter == 1)

 {

 x--;

 printf("\nProcess[%d]\t\t%d\t\t %d\t\t\t %d", i + 1, burst_time[i], total - arrival_time[i],

total - arrival_time[i] - burst_time[i]);

 wait_time = wait_time + total - arrival_time[i] - burst_time[i];

 turnaround_time = turnaround_time + total - arrival_time[i];

 counter = 0;

 }

 if(i == limit - 1)

 {

 i = 0;

 }

 else if(arrival_time[i + 1] <= total)

 {

 i++;

 }

 else

 {

 i = 0;

 }

 }

 average_wait_time = wait_time * 1.0 / limit;

 average_turnaround_time = turnaround_time * 1.0 / limit;

 printf("\n\nAverage Waiting Time:\t%f", average_wait_time);

 printf("\nAvg Turnaround Time:\t%f\n", average_turnaround_time);

 return 0;

}

OUTPUT

28

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Enter Total Number of Processes: 4

Enter Details of Process[1]

Arrival Time: 0

Burst Time: 9

Enter Details of Process[2]

Arrival Time: 1

Burst Time: 5

Enter Details of Process[3]

Arrival Time: 2

Burst Time: 3

Enter Details of Process[4]

Arrival Time: 3

Burst Time: 4

Enter Time Quantum: 5

Process ID Burst Time Turnaround Time Waiting Time

Process[2] 5 9 4

Process[3] 3 11 8

Process[4] 4 14 10

Process[1] 9 21 12

Average Waiting Time: 8.500000

Avg Turnaround Time: 13.750000

29

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Viva Questions

1. What is CPU Scheduler?

Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of

them.

CPU scheduling decisions may take place when a process:

a. .Switches from running to waiting state.

b. .Switches from running to ready state. c

c. .Switches from waiting to ready.

d. Terminates.

Scheduling under a. and d. is non-pre-emptive.

All other scheduling is pre-emptive

2. What are all the scheduling algorithms?

a. FCFS(First Come First Serve)

b. SJF(Shortest Job First)

c. Round robin

d. Priority Scheduling algorithms

3. Explain FCFS(First Come First Served)?

a. The process that requests the CPU first is allocated the CPU first. The code for

b. FCFS scheduling is simple to write and understand.

c. Explain SJF(Shortest Job First)?

d. The process which has the less burst time execute first. If both process have same

burst time then FCFS will be used.

4. Explain Round Robin?

The round-robin (RR) scheduling algorithm is designed especially for timesharing systems.

CPU switch between the processes based on a small unit of time called time slice.

5. Explain Priority Scheduling algorithm?

CPU is allocated to the process with the highest priority.

6. Which algorithm gives minimum average waiting time?

SJF(Shortest Job First)

7. What is CPU utilization?

We want to keep the CPU as busy as possible. Conceptually, CPU utilization can range

from 0 to 100 percent. In a real system, it should range from 40 percent (for a lightly loaded

system) to 90 percent.

8. What is Throughput?

30

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

The amount of work is being done by the CPU. One unit of work is the number of processes

that are completed per unit time, called throughput

9. What is Turnaround time.

The interval from the time of submission of a process to the time of completion is the

turnaround time

10. What is waiting time?

Waiting time is the sum of the periods spent waiting in the ready queue.

11. What is Response time?

the time from the submission of a request until the first response is produced.

12. What are short, long and medium-term scheduling?

a. Long term scheduler determines which programs are admitted to the system for processing.

It controls the degree of multiprogramming. Once admitted, a job becomes a process.

b. Medium term scheduling is part of the swapping function. This relates to processes that are

in a blocked or suspended state. They are swapped out of real-memory until they are ready

to execute. The swapping-in decision is based on memory-management criteria.

c. Short term scheduler, also known as a dispatcher executes most frequently, and makes the

finest-grained decision of which process should execute next. This scheduler is invoked

whenever an event occurs. It may lead to interruption of one process by pre-emption.

13. What are turnaround time and response time?

Turnaround time is the interval between the submission of a job and its completion.

14. What is pre-emptive and non-pre-emptive scheduling?

a. Pre-emptive scheduling: The pre-emptive scheduling is prioritized. The highest priority

process should always be the process that is currently utilized.

b. Non-Pre-emptive scheduling: When a process enters the state of running, the state of that

process is not deleted from the scheduler until it finishes its service time.

31

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

DEADLOCK

Deadlock :

A set of processes is deadlocked if each process in the set is waiting for an event that only another

process in the set can cause (including itself).

Waiting for an event could be:

 Waiting for access to a critical section

 Waiting for a resource Note that it is usually a non-pre-emptable (resource). Pre-emptable

resources can be yanked away and given to another.

Conditions for Deadlock

 Mutual exclusion: resources cannot be shared.

 Hold and wait: processes request resources incrementally, and hold on to what they've got.

 No pre-emption: resources cannot be forcibly taken from processes.

 Circular wait: circular chain of waiting, in which each process is waiting for a resource held by

the next process in the chain.

Deadlock Avoidance

 This approach to the deadlock problem anticipates deadlock before it actually occurs.

 This approach employs an algorithm to access the possibility that deadlock could occur and acting

accordingly.

 This method differs from deadlock prevention, which guarantees that deadlock cannot occur by

denying one of the necessary conditions of deadlock.

 If the necessary conditions for a deadlock are in place, it is still possible to avoid deadlock by

being careful when resources are allocated.

 Perhaps the most famous deadlock avoidance algorithm, due to Dijkstra [1965], is the Banker’s

algorithm.

Safe State

Safe state is one where

 It is not a deadlocked state

 There is some sequence by which all requests can be satisfied.

 To avoid deadlocks, we try to make only those transitions that will take you from one safe state to

another.

32

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 We avoid transitions to unsafe state (a state that is not deadlocked, and is not safe).

 Banker's algorithm is a deadlock avoidance algorithm.

 It is named so because this algorithm is used in banking systems to determine whether a loan can

be granted or not.

 Consider there are n account holders in a bank and the sum of the money in all of their accounts

is S.

 Every time a loan has to be granted by the bank, it subtracts the loan amount from the total

money the bank has.

 Then it checks if that difference is greater than S.

 It is done because, only then, the bank would have enough money even if all the n account holders

draw all their money at once.

 Banker's algorithm works in a similar way in computers.

 The Banker's algorithm is run by the operating system whenever a process requests resources.

 The algorithm prevents deadlock by denying or postponing the request if it determines that

accepting the request could put the system in an unsafe state (one where deadlock could occur).

 When a new process enters a system, it must declare the maximum number of instances of each

resource type that may not exceed the total number of resources in the system.

 For the Banker's algorithm to work, it needs to know three things:

 How much of each resource each process could possibly request

 How much of each resource each process is currently holding

 How much of each resource the system has available

 Some of the resources that are tracked in real systems are memory, semaphores and interface access.

33

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.2

BANKER’S ALGORITHM FOR DEADLOCK AVOIDANCE

AIM

Implement banker’s algorithm for deadlock avoidance

PROGRAM

#include<stdio.h>

struct pro{

 int all[10],max[10],need[10];

 int flag;

};

int i,j,pno,r,nr,id,k=0,safe=0,exec,count=0,wait=0,max_err=0;

struct pro p[10];

int aval[10],seq[10];

void safeState()

{

 while(count!=pno){

 safe = 0;

 for(i=0;i<pno;i++){

 if(p[i].flag){

 exec = r;

 for(j=0;j<r;j++)

 {

 if(p[i].need[j]>aval[j]){

 exec =0;

 }

 }

 if(exec == r){

 for(j=0;j<r;j++){

 aval[j]+=p[i].all[j];

 }

 p[i].flag = 0;

 seq[k++] = i;

 safe = 1;

 count++;

 }

 }

 }

 if(!safe)

 {

 printf("System is in Unsafe State\n");

 break;

 }

 }

 if(safe){

 printf("\n\nSystem is in safestate \n");

34

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 printf("Safe State Sequence \n");

 for(i=0;i<k;i++)

 printf("P[%d] ",seq[i]);

 printf("\n\n");

 }

}

void reqRes(){

 printf("\nRequest for new Resourses");

 printf("\nProcess id ? ");

 scanf("%d",&id);

 printf("Enter new Request details ");

 for(i=0;i<r;i++){

 scanf("%d",&nr);

 if(nr <= p[id].need[i])

 {

 if(nr <= aval[i]){

 aval[i] -= nr;

 p[id].all[i] += nr;

 p[id].need[i] -= nr;

 }

 else

 wait = 1;

 }

 else

 max_err = 1;

 }

 if(!max_err && !wait)

 safeState();

 else if(max_err){

 printf("\nProcess has exceeded its maximum usage \n");

 }

 else{

 printf("\nProcess need to wait\n");

 }

}

void main()

{

 printf("Enter no of process ");

 scanf("%d",&pno);

 printf("Enter no. of resourses ");

 scanf("%d",&r);

 printf("Enter Available Resourse of each type ");

 for(i=0;i<r;i++){

 scanf("%d",&aval[i]);

35

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 }

 printf("\n\n---Resourse Details---");

 for(i=0;i<pno;i++){

 printf("\nResourses for process %d\n",i);

 printf("\nAllocation Matrix\n");

 for(j=0;j<r;j++){

 scanf("%d",&p[i].all[j]);

 }

 printf("Maximum Resourse Request \n");

 for(j=0;j<r;j++){

 scanf("%d",&p[i].max[j]);

 }

 p[i].flag = 1;

 }

 // Calcualting need

 for(i=0;i<pno;i++){

 for(j=0;j<r;j++){

 p[i].need[j] = p[i].max[j] - p[i].all[j];

 }

 }

 //Print Current Details

 printf("\nProcess Details\n");

 printf("Pid\t\tAllocattion\t\tMax\t\tNeed\n");

 for(i=0;i<pno;i++)

 {

 printf("%d\t\t",i);

 for(j=0;j<r;j++){

 printf("%d ",p[i].all[j]);

 }

 printf("\t\t");

 for(j=0;j<r;j++){

 printf("%d ",p[i].max[j]);

 }

 printf("\t\t");

 for(j=0;j<r;j++){

 printf("%d ",p[i].need[j]);

 }

 printf("\n");

 }

 //Determine Current State in Safe State

 safeState();

 int ch=1;

 do{

 printf("Request new resourse ?[0/1] :");

36

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 scanf("%d",&ch);

 if(ch)

 reqRes();

 }while(ch!=0);

 //end:printf("\n");

}

OUTPUT

Enter no of process 5

Enter no. of resourses 3

Enter Available Resourse of each type 3

3

2

---Resourse Details---

Resourses for process 0

Allocation Matrix

0 1 0

Maximum Resourse Request

7 5 3

Resourses for process 1

Allocation Matrix

3 0 2

Maximum Resourse Request

3 2 2

Resourses for process 2

Allocation Matrix

3 0 2

Maximum Resourse Request

9 0 2

Resourses for process 3

Allocation Matrix

2 1 1

Maximum Resourse Request

2 2 2

Resourses for process 4

Allocation Matrix

37

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

0 0 2

Maximum Resource Request

4 3 3

Process Details

Pid Allocation Max Need

0 0 1 0 7 5 3 7 4 3

1 3 0 2 3 2 2 0 2 0

2 3 0 2 9 0 2 6 0 0

3 2 1 1 2 2 2 0 1 1

4 0 0 2 4 3 3 4 3 1

System is in safe state

Safe State Sequence

P[1] P[2] P[3] P[4] P[0]

Request new resource ?[0/1] :

38

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Viva questions

1. What is deadlock?

Deadlock is a situation that when two or more process waiting for each other and holding the

resource which is required by another process.

2. What are the necessary conditions to occur deadlock?

Mutual exclusion: At least one resource must be held in a non-sharable mode, that is, only one

process at a time can use the resource. If another process requests that resource, the requesting

process must be delayed until the resource has been released.

Hold and wait: A process must be holding at least one resource and waiting to acquire

additional resources that are currently being held by other processes.

No pre-emption: Resources cannot be pre-empted.; that is, a resource can be released only

voluntarily by the process holding it, after that process has completed its task.

Circular wait: A set {P$, Pi, ..., Pn} of waiting processes must exist such that P-0 is waiting for

a resource held by P\, P\ is waiting for a resource held by P?, •••, P.,--i is waiting for a resource

held by Pn, and P, is waiting for a resource held by Pn.

3. Explain about resource allocation graph?

Deadlocks can be described more precisely in terms of a directed graph called a system

resource-allocation graph. If the graph contains no cycles, then no process in the system is

deadlocked. If the graph does contain a cycle, then a deadlock may exist.

4. What are the methods to handle the dead locks?

a. We can use a protocol to prevent or avoid deadlocks, ensuring that the system will

never enter a deadlock state.

b. We can allow the system to enter a deadlock state, detect it, and recover.

c. We can ignore the problem altogether and pretend that deadlocks never occur in the

system.

d. The third solution is the one used by most operating systems

5. What are the deadlock avoidance algorithms?

A dead lock avoidance algorithm dynamically examines there source-allocation state to ensure

that a circular wait condition can never exist. The resource allocation state is defined by the

number of available and allocated resources, and the maximum demand of the process. There

are two algorithms:

Resource allocation graph algorithm

a. Banker’s algorithm

b. Safety algorithm

c. Resource request algorithm

39

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

6. What is Bankers Algorithm.

It is an algorithm which used in a banking system to ensure that the bank never allocated its

available cash in such a way that it could no longer satisfy the needs of all its customers.

7. What is a Safe State and what is its use in deadlock avoidance?

When a process requests an available resource, system must decide if immediate allocation

leaves the system in a safe state. System is in safe state if there exists a safe sequence of all

processes. Deadlock Avoidance: ensure that a system will never enter an unsafe state.

8. What is starvation and aging?

Starvation is Resource management problem where a process does not get the resources it needs

for a long time because the resources are being allocated to other processes.

9. What is a Safe State and its’ use in deadlock avoidance?

When a process requests an available resource, system must decide if immediate allocation

leaves the system in a safe state

 System is in safe state if there exists a safe sequence of all processes.

 Sequence is safe if for each Pi, the resources that Pi can still request can be satisfied by

currently available resources + resources held by all the Pj, with j If Pi resource needs

are not immediately available, then Pi can wait until all Pj have finished. When Pj is

finished, Pi can obtain needed resources, execute, return allocated resources, and

terminate. When Pi terminates, Pi+1 can obtain its needed resources, and so on.

 Deadlock Avoidance Þ ensure that a system will never enter an unsafe state.

10. Recovery from Deadlock?

 Process Termination:

->Abort all deadlocked processes.

->Abort one process at a time until the deadlock cycle iseliminated.

->In which order should we choose to abort?

 Priority of the process.

How long process has computed, and how much longer tocompletion.

Resources the process has used.

Resources process needs to complete.

How many processes will need to be terminated?

Is process interactive or batch?

 Resource Preemption:

->Selecting a victim – minimize cost.

->Rollback – return to some safe state, restart process for thatstate.

->Starvation – same process may always be picked as victim,include number of rollback

in cost factor.

40

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

DISK SCHEDULING

Disk scheduling is is done by operating systems to schedule I/O requests arriving for disk. It is also

known as I/O scheduling.

Disk scheduling is important because:

 Multiple I/O requests may arrive by different processes and only one I/O request can be

served at a time by disk controller. Thus other I/O requests need to wait in waiting queue

and need to be scheduled.

 Two or more request may be far from each other so can result in greater disk arm

movement.

 Hard drives are one of the slowest parts of computer system and thus need to be accessed in

an efficient manner.

There are many Disk Scheduling Algorithms but before discussing them let’s have a quick look at

some of the important terms:

 Seek Time:Seek time is the time taken to locate the disk arm to a specified track where the

data is to be read or write. So the disk scheduling algorithm that gives minimum average

seek time is better.

 Rotational Latency: Rotational Latency is the time taken by the desired sector of disk to

rotate into a position so that it can access the read/write heads. So the disk scheduling

algorithm that gives minimum rotational latency is better.

 Transfer Time: Transfer time is the time to transfer the data. It depends on the rotating speed

of the disk and number of bytes to be transferred.

 Disk Access Time: Disk Access Time is:

Disk Access Time = Seek Time + Rotational Latency + Transfer Time

 Disk Response Time: Response Time is the average of time spent by a request waiting to

perform its I/O operation. Average Response time is the response time of the all

requests. Variance Response Time is measure of how individual request are serviced with

respect to average response time. So the disk scheduling algorithm that gives minimum

variance response time is better.

 Disk Scheduling Algorithms

 FCFS

 SSTF

 SCAN

 CSCAN

 LOOK

 CLOOK

41

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

1. FCFS: FCFS is the simplest of all the Disk Scheduling Algorithms. In FCFS, the requests

are addressed in the order they arrive in the disk queue.

Advantages:

 Every request gets a fair chance

 No indefinite postponement

Disadvantages:

 Does not try to optimize seek time

 May not provide the best possible service

3. SCAN: In SCAN algorithm the disk arm moves into a particular direction and services the

requests coming in its path and after reaching the end of disk, it reverses its direction and

again services the request arriving in its path. So, this algorithm works like an elevator and

hence also known as elevator algorithm. As a result, the requests at the midrange are

serviced more and those arriving behind the disk arm will have to wait.

Advantages:

 High throughput

 Low variance of response time

 Average response time

Disadvantages:

 Long waiting time for requests for locations just visited by disk arm. These situations

are avoided in CSAN algorithm in which the disk arm instead of reversing its direction

goes to the other end of the disk and starts servicing the requests from there. So, the disk

arm moves in a circular fashion and this algorithm is also similar to SCAN algorithm

and hence it is known as C-SCAN (Circular SCAN).

Advantages:

 Provides more uniform wait time compared to SCAN

4. CSCAN: In SCAN algorithm, the disk arm again scans the path that has been scanned, after

reversing its direction. So, it may be possible that too many requests are waiting at the other

end or there may be zero or few requests pending at the scanned area.

42

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.4

DISK SCHEDULING ALGORITHMS

AIM

Simulate the following disk scheduling algorithms

a). FCFS

b). SCAN

c). C-SCAN

FIRST COME FIRST SERVE (FCFS)

PROGRAM

#include<stdio.h>

void main(){

 int ioq[20],i,n,ihead,tot;

 float seek=0,avgs;

 printf("Enter the number of requests\t:");

 scanf("%d",&n);

 printf("Enter the initial head position\t:");

 scanf("%d",&ihead);

 ioq[0] = ihead;

 ioq[n+1] =0;

 printf("Enter the I/O queue requests \n");

 for(i=1;i<=n;i++){

 scanf("%d",&ioq[i]);

 }

 ioq[n+1] =ioq[n];// to set the last seek zero

 printf("\nOrder of request served\n");

 for(i=0;i<=n;i++){

 tot = ioq[i+1] - ioq[i];

 if(tot < 0)

 tot = tot * -1;

 seek += tot;

 // printf("%d\t%d\n",ioq[i],tot);// to display each seek

 printf("%d --> ",ioq[i]);

 }

43

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 avgs = seek/(n);

 printf("\nTotal Seek time\t\t: %.2f",seek);

 printf("\nAverage seek time\t: %.2f\n\n",avgs);

}

OUTPUT 1

Enter the number of requests :5

Enter the initial head position :100

Enter the I/O queue requests

23

89

132

42

187

Order of request served

100 --> 23 --> 89 --> 132 --> 42 --> 187 -->

Total Seek time : 421.00

Average seek time : 84.20

OUTPUT 2

Enter the number of requests :5

Enter the initial head position :100

Enter the I/O queue requests

23

89

132

42

187

Order of request served

100 77

23 66

89 43

132 90

42 145

187 0

Total Seek time : 421.00

Average seek time : 84.20

44

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

SCAN

PROGRAM

#include<stdio.h>

void main()

{

 int ioq[20],i,n,j,ihead,temp,scan,tot;

 float seek=0,avgs;

 printf("Enter the number of requests\t:");

 scanf("%d",&n);

 printf("Enter the initial head position\t:");

 scanf("%d",&ihead);

 ioq[0] = ihead;

 ioq[1] = 0;

 n += 2;

 printf("Enter the I/O queue requests \n");

 for(i=2;i<n;i++){

 scanf("%d",&ioq[i]);

 }

 for(i=0;i<n-1;i++){

 for(j=0;j<n-1;j++)

 {

 if(ioq[j] > ioq[j+1]){

 temp = ioq[j];

 ioq[j] = ioq[j+1];

 ioq[j+1] = temp;

 }

 }

 }

 ioq[n]=ioq[n-1];

 for(i=0;i<n;i++){

 if(ihead == ioq[i]){

 scan = i;

 break;

45

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 }

 }

 printf("\nOrder of request served\n\n");

 tot = 0;

 for(i=scan;i>=0;i--){

 //rai tot = ioq[i+1] - ioq[i];

 tot = ioq[i] – ioq[i-1]; // me

 if(i==0) // me

 tot=ioq[i]-ioq[scan+1];//me

 if(tot < 0)

 tot = tot * -1;

 //seek += tot;

 printf("%d\t%d\n",ioq[i],tot);

 }

 for(i=scan+1;i<n;i++){

 tot = ioq[i+1] - ioq[i];

 if(tot < 0)

 tot = tot * -1;

 //seek += tot;

 printf("%d\t%d\n",ioq[i],tot);

 }

 seek = ihead + ioq[n-1];

 avgs = seek/(n-2);

 printf("\n\nTotal Seek time\t\t: %.2f",seek);

 printf("\nAverage seek time\t: %.2f\n\n",avgs);

}

OUTPUT

Enter the number of requests :8

Enter the initial head position :53

Enter the I/O queue requests

98

183

37

122

14

46

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

124

65

67

Order of request served

53 16

37 23

14 14

0 65

65 2

67 31

98 24

122 2

124 59

183 0

Total Seek time : 236.00

Average seek time : 29.50

CSCAN

PROGRAM

#include<stdio.h>

void main()

{

 int ioq[20],i,n,j,ihead,itail,temp,scan,tot=0;

 float seek=0,avgs;

 printf("Enter the number of requests\t: ");

 scanf("%d",&n);

 ioq[0] = 0;

 printf("Enter the initial head position\t: ");

 scanf("%d",&ihead);

 ioq[1] = ihead;

 printf("Enter the maximum track limit\t: ");

 scanf("%d",&itail);

 ioq[2] = itail;

 n += 3;

 printf("Enter the I/O queue requests \n");

 for(i=3;i<n;i++){

47

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 scanf("%d",&ioq[i]);

 }

 for(i=0;i<n-1;i++){

 for(j=0;j<n-1;j++)

 {

 if(ioq[j] > ioq[j+1]){

 temp = ioq[j];

 ioq[j] = ioq[j+1];

 ioq[j+1] = temp;

 }

 }

 }

 for(i=0;i<n+1;i++){

 if(ihead == ioq[i]){

 scan = i;

 break;

 }

 }

 i = scan;

 temp = n;

 printf("\nOrder of request served\n");

 printf("\n");

 while(i != temp){

 if(i < temp-1){

 tot = ioq[i+1] - ioq[i];

 if(tot < 0)

 tot = tot * -1;

 seek += tot;

 }

 printf("%d --> ",ioq[i]);

 // printf("%d\t%d\n",ioq[i],tot);

 i++;

 if(i == n){

48

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 i = 0;

 temp = scan;

 seek += itail;

 }

 }

 avgs = seek/(n-3);

 printf("\n\nTotal Seek time\t\t: %.2f",seek);

 printf("\nAverage seek time\t: %.2f\n\n",avgs);

 }

OUTPUT

Enter the number of requests : 8

Enter the initial head position : 50

Enter the maximum track limit : 200

Enter the I/O queue requests

90

120

35

122

38

128

65

68

Order of request served

50 --> 65 --> 68 --> 90 --> 120 --> 122 --> 128 --> 200 --> 0 --> 35 --> 38 -->

Total Seek time : 388.00

Average seek time : 48.50

49

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

PAGE REPLACEMENT TECHNIQUES

First In First Out (FIFO) –

This is the simplest page replacement algorithm. In this algorithm, the operating system keeps

track of all pages in the memory in a queue, the oldest page is in the front of the queue. When

a page needs to be replaced page in the front of the queue is selected for removal.

 Example-1Consider page reference string 1, 3, 0, 3, 5, 6 with 3 page frames.Find number

of page faults.

 Initially all slots are empty, so when 1, 3, 0 came they are allocated to the empty slots —

> 3 Page Faults.

when 3 comes, it is already in memory so —> 0 Page Faults.

Then 5 comes, it is not available in memory so it replaces the oldest page slot i.e 1. —>1

Page Fault.
6 comes, it is also not available in memory so it replaces the oldest page slot i.e 3 —>1

Page Fault.
Finally when 3 come it is not avilable so it replaces 0 1 page fault

Belady’s anomaly – Belady’s anomaly proves that it is possible to have more page faults

when increasing the number of page frames while using the First in First Out (FIFO) page

replacement algorithm. For example, if we consider reference string 3, 2, 1, 0, 3, 2, 4, 3, 2, 1,

0, 4 and 3 slots, we get 9 total page faults, but if we increase slots to 4, we get 10 page faults.

Optimal Page replacement –
In this algorithm, pages are replaced which would not be used for the longest duration of time

in the future.

Example-2:Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, with 4 page frame.

Find number of page fault.

50

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4

Page faults
0 is already there so —> 0 Page fault.

when 3 came it will take the place of 7 because it is not used for the longest duration

of time in the future.—>1 Page fault.

0 is already there so —> 0 Page fault..

4 will takes place of 1 —> 1 Page Fault.

 Now for the further page reference string —> 0 Page fault because they are already

available in the memory.

 Optimal page replacement is perfect, but not possible in practice as the operating

system cannot know future requests. The use of Optimal Page replacement is to set up

a benchmark so that other replacement algorithms can be analyzed against it.

Least Recently Used –
In this algorithm page will be replaced which is least recently used.

Example-3Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2 with 4 page

frames.Find number of page faults.

51

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4

Page faults
0 is already their so —> 0 Page fault.

when 3 came it will take the place of 7 because it is least recently used —>1 Page

fault
0 is already in memory so —> 0 Page fault.

4 will takes place of 1 —> 1 Page Fault

Now for the further page reference string —> 0 Page fault because they are already

available in the memory.

52

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.7

PAGE REPLACEMENT ALGORITHMS

AIM

Simulate the following page replacement algorithms

a) FIFO

b) LRU

c) LFU

PROGRAM

FIFO (FIRST IN FIRST OUT)

#include<stdio.h>

void main()

{

 int n,f,fr[20],p[50],rep=0, found,fi=0;

 int i,k;

 printf("Enter the number of pages ");

 scanf("%d",&n);

 printf("Enter the reffrence string : ");

 for(i=0;i<n;i++)

 scanf("%d",&p[i]);

 printf("Enter the frame number :");

 scanf("%d",&f);

 for(i=0;i<f;i++)

 fr[i] = -1;

 printf("\n\nPages\t\tFrames\n\n");

 for(i=0;i<n;i++)

 {

 printf("%d\t\t",p[i]);

 found = 1;

 for(k=0;k<f;k++)

 {

 if(p[i] == fr[k]){

 found = 0;

53

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 break;

 }

 }

 if(found)

 {

 fr[fi] = p[i];

 rep++;

 fi = (fi+1)%f;

 for(k=0;k<f;k++)

 printf("%d\t",fr[k]);

 }

 printf("\n");

 }

 printf("\n\nNumber of page fault : %d\n",rep);

}

OUTPUT

Enter the number of pages 20

Enter the reference string : 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Enter the frame number :3

Pages Frames

7 7 -1 -1

0 7 0 -1

1 7 0 1

2 2 0 1

0

3 2 3 1

0 2 3 0

4 4 3 0

2 4 2 0

3 4 2 3

0 0 2 3

3

2

1 0 1 3

2 0 1 2

0

1

54

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

7 7 1 2

0 7 0 2

1 7 0 1

Number of page fault : 15

LEAST RECENTLY USED (LRU)

#include<stdio.h>

 int findLRU(int time[], int n){

int i, minimum = time[0], pos = 0;

for(i = 1; i < n; ++i){

if(time[i] < minimum){

minimum = time[i];

pos = i;

}

}

return pos;

}

int main()

{

 int no_of_frames, no_of_pages, frames[10], pages[30], counter = 0, time[10], flag1, flag2, i, j,

pos, faults = 0;

printf("Enter number of frames: ");

scanf("%d", &no_of_frames);

printf("Enter number of pages: ");

scanf("%d", &no_of_pages);

printf("Enter reference string: ");

 for(i = 0; i < no_of_pages; ++i){

 scanf("%d", &pages[i]);

 }

for(i = 0; i < no_of_frames; ++i){

 frames[i] = -1;

 }

 for(i = 0; i < no_of_pages; ++i){

 flag1 = flag2 = 0;

 for(j = 0; j < no_of_frames; ++j){

 if(frames[j] == pages[i]){

 counter++;

 time[j] = counter;

 flag1 = flag2 = 1;

 break;

55

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 }

 }

 if(flag1 == 0){

for(j = 0; j < no_of_frames; ++j){

 if(frames[j] == -1){

 counter++;

 faults++;

 frames[j] = pages[i];

 time[j] = counter;

 flag2 = 1;

 break;

 }

 }

 }

 if(flag2 == 0){

 pos = findLRU(time, no_of_frames);

 counter++;

 faults++;

 frames[pos] = pages[i];

 time[pos] = counter;

 }

 printf("\n");

 for(j = 0; j < no_of_frames; ++j){

 printf("%d\t", frames[j]);

 }

}

printf("\n\nTotal Page Faults = %d", faults);

 return 0;

}

OUTPUT

Enter number of frames: 3

Enter number of pages: 6

Enter reference string: 5 7 5 6 7 3

5 -1 -1

5 7 -1

5 7 -1

5 7 6

5 7 6

3 7 6

Total Page Faults = 4

56

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

LEAST FREQUENTLY USED (LFU)

#include<stdio.h>

 int main()

{

 int total_frames, total_pages, hit = 0;

 int pages[25], frame[10], arr[25], time[25];

 int m, n, page, flag, k, minimum_time, temp;

 printf("Enter Total Number of Pages:\t");

 scanf("%d", &total_pages);

 printf("Enter Total Number of Frames:\t");

 scanf("%d", &total_frames);

 for(m = 0; m < total_frames; m++)

 {

 frame[m] = -1;

 }

 for(m = 0; m < 25; m++)

 {

 arr[m] = 0;

 }

 printf("Enter Values of Reference String\n");

 for(m = 0; m < total_pages; m++)

 {

 printf("Enter Value No.[%d]:\t", m + 1);

 scanf("%d", &pages[m]);

 }

 printf("\n");

 for(m = 0; m < total_pages; m++)

 {

 arr[pages[m]]++;

 time[pages[m]] = m;

 flag = 1;

 k = frame[0];

 for(n = 0; n < total_frames; n++)

 {

 if(frame[n] == -1 || frame[n] == pages[m])

 {

 if(frame[n] != -1)

 {

 hit++;

 }

 flag = 0;

 frame[n] = pages[m];

 break;

57

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 }

 if(arr[k] > arr[frame[n]])

 {

 k = frame[n];

 }

 }

 if(flag)

 {

 minimum_time = 25;

 for(n = 0; n < total_frames; n++)

 {

 if(arr[frame[n]] == arr[k] && time[frame[n]] < minimum_time)

 {

 temp = n;

 minimum_time = time[frame[n]];

 }

 }

 arr[frame[temp]] = 0;

 frame[temp] = pages[m];

 }

 for(n = 0; n < total_frames; n++)

 {

 printf("%d\t", frame[n]);

 }

 printf("\n");

 }

 printf("Page Hit:\t%d\n", hit);

 return 0;

}

OUTPUT

Enter number of frames: 4

Enter number of pages: 5

Enter reference string: 5 3 1 2 4

5 -1 -1 -1

5 3 -1 -1

5 3 -1 -1

5 3 1 -1

5 3 1 2

4 3 1 2

Total Page hit=0

58

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Viva Questions

1. Why paging is used?

Paging is solution to external fragmentation problem which is to permit the logical address

space of a process to be non-contiguous, thus allowing a process to be allocating physical

memory wherever the latter is available.

2. What is virtual memory?

Virtual memory is memory management technique which is used to execute the process

which has more than actual memory size.

3. What is Demand Paging?

It is memory management technique used in virtual memory such that page will not load

into the memory until it is needed.

4. What are all page replacement algorithms?

a. FIFO(First in First out)

2. Optimal Page Replacement

3. LRU(Least-Recently-used)

5. Which page replacement algorithm will have less page fault rate?

Optimal Page Replacement

6. What is thrashing?

It is situation that CPU spends more time on paging than executing.

7. What is swapping

A process must be in memory to be executed. A process, however, can be swapped

temporarily out of memory to a backing store and then brought back into memory for

continued execution. This process is called swapping.

8. What is fragmentation?

fragmentation is a phenomenon in which storage space is used inefficiently, reducing

capacity or performance.

9. Explain External fragmentation?

As processes are loaded and removed from memory, the free memory space is broken into

little pieces. External fragmentation exists when there is enough total memory space to

satisfy a request, but the available spaces are not contiguous.

10. Explain Internal fragmentation?

Consider a multiple-partition allocation scheme with a hole of 18,464 bytes. Suppose that

the next process requests 18,462 bytes. If we allocate exactly the requested block, we are

left with a hole of 2 bytes. The overhead to keep track of this hole will be substantially

59

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

larger than the hole itself. The general approach to avoiding this problem is to break the

physical memory into fixed-sized blocks and allocate memory in units based on block size.

With this approach, the memory allocated to a process may be slightly larger than the

requested memory. The difference between these two numbers is internal fragmentation.

11. What is paging?

Paging is a memory-management scheme that permits the physical address space of a

process to be non-contiguous. Paging avoids the considerable problem of fitting memory

chunks of varying sizes onto the backing store.

12. What is frame?

Breaking main memory into fixed number of blocks called frames.

13. What is page?

Breaking logical memory into blocks of same size is page.

14. What is the best page size when designing an operating system?

The best paging size varies from system to system, so there is no single best when it comes

to page size. There are different factors to consider in order to come up with a suitable page

size, such as page table, paging time, and its effect on the overall efficiency of the operating

system.

15. What is virtual memory?

Virtual memory is hardware technique where the system appears to have more memory that

it actually does. This is done by time-sharing, the physical memory and storage parts of the

memory one disk when they are not actively being used.

16. What is Throughput, Turnaround time, waiting time and Response time?

Throughput – number of processes that complete their execution per time unit. Turnaround

time – amount of time to execute a particular process. Waiting time – amount of time a

process has been waiting in the ready queue. Response time – amount of time it takes from

when a request was submitted until the first response is produced, not output (for time-

sharing environment).

17. Explain Belady's Anomaly?

Also called FIFO anomaly. Usually, on increasing the number of frames allocated to a

process virtual memory, the process execution is faster, because fewer page faults occur.

Sometimes, the reverse happens, i.e., the execution time increases even when more frames

are allocated to the process. This is Belady's Anomaly. This is true for certain page

reference patterns.

18. What is fragmentation? Different types of fragmentation?

60

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Fragmentation occurs in a dynamic memory allocation system when many of the free blocks

are too small to satisfy any request.

 External Fragmentation: External Fragmentation happens when a dynamic memory

allocation algorithm allocates some memory and a small piece is left over that cannot be

effectively used. If too much external fragmentation occurs, the amount of usable

memory is drastically reduced. Total memory space exists to satisfy a request, but it is

not contiguous

 Internal Fragmentation: Internal fragmentation is the space wasted inside of allocated

memory blocks because of restriction on the allowed sizes of allocated blocks. Allocated

memory may be slightly larger than requested memory; this size difference is memory

internal to a partition, but not being used Reduce external fragmentation by compaction

->Shuffle memory contents to place all free memory together in one large block.

->Compaction is possible only if relocation is dynamic, and is done at execution time.

19. Explain Segmentation with paging?

Segments can be of different lengths, so it is harder to find a place for a segment in memory

than a page. With segmented virtual memory, we get the benefits of virtual memory but we

still have to do dynamic storage allocation of physical memory. In order to avoid this, it is

possible to combine segmentation and paging into a two-level virtual memory system. Each

segment descriptor points to page table for that segment. This give some of the advantages

of paging (easy placement) with some of the advantages of segments (logical division of the

program).

20. Under what circumstances do page faults occur? Describe the actions taken by the operating

system when a page fault occurs?

A page fault occurs when an access to a page that has not been brought into main memory

takes place. The operating system verifies the memory access, aborting the program if it is

invalid. If it is valid, a free frame is located and I/O is requested to read the needed page into

the free frame. Upon completion of I/O, the process table and page table are updated and the

instruction is restarted

61

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

FILE ORGANISATION TECHNIQUES

Information about files is maintained by Directories. A directory can contain multiple files. It can

even have directories inside of them. In Windows we also call these directories as folders.

Following is the information maintained in a directory :

Name : The name visible to user.

Type : Type of the directory.

Location : Device and location on the device where the file header is located.

Size : Number of bytes/words/blocks in the file.

Position : Current next-read/next-write pointers.

Protection : Access control on read/write/execute/delete.

Usage : Time of creation, access, modification etc.

Mounting : When the root of one file system is "grafted" into the existing tree of another file

system its called Mounting.

Advantages of maintaining directories are:

Efficiency: A file can be located more quickly.

Naming: It becomes convenient for users as two users can have same name for different

files or may have different name for same file.

Grouping: Logical grouping of files can be done by properties e.g. all java programs, all

games etc.

Naming problem: Users cannot have same name for two files.

Grouping problem: Users cannot group files according to their need.

Two-Level Directory

In this separate directories for each user is maintained.

Path name: Due to two levels there is a path name for every file to locate that file.

So same file name for different user are possible. Searching is efficient in this method.

Single-Level Directory

In this a single directory is maintained for all the users.

62

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.8

FILE ORGANISATION TECHNIQUES

AIM

Simulate the following file organization techniques

a). Single level

b). Two level

c). Hierarchical

PROGRAM

Single Level Directory

#include<stdio.h>

#include<string.h>

struct dirct{

 char dir[20],file[20][10];

 int findex;

};

void main(){

 int i, ch=1;

 struct dirct d;

 char ser[20];

 d.findex=0;

 printf("Enter the directory name ");

 scanf("%s",d.dir);

 do{

 printf("\n1<<<Create new file\t2<<<Delete a file\t3<<<Search a file\t\n4<<< List

files\t\t0<<<Ezxit\n");

 printf("Enter your choice ");

 scanf("%d",&ch);

 switch(ch){

 case 1: printf("\nEnter the file name ");

 scanf("%s",d.file[d.findex++]);

63

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 printf("File created\n");

 break;

 case 2: printf("\nEnter the file to delete ");

 scanf("%s",ser);

 for(i=0;i<d.findex;i++){

 if(!strcmp(ser,d.file[i]))

 {

 printf("File removed \n");

 strcpy(d.file[i],d.file[d.findex-1]);

 d.findex--;

 break;

 }

 }

 if(i==d.findex)

 printf("No such file or directory\n");

 break;

 case 3: printf("\nEnter the file to search ");

 scanf("%s",ser);

 for(i=0;i<d.findex;i++){

 if(!strcmp(ser,d.file[i]))

 {

 printf("\nSearch completed\nFile found at %d position\n",i+1);

 break;

 }

 }

 if(i==d.findex){

 printf("\nSearch completed\n");

 printf("No such file or directory\n");

 }

 break;

 case 4: printf("\nThe files in the directory %s are;\n",d.dir);

 for(i=0;i<d.findex;i++)

 printf("%s\n", d.file[i]);

 break;

 }

 }while(ch);

 printf("\n");

}

64

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

OUTPUT

Enter the directory name cse

1<<<Create new file 2<<<Delete a file 3<<<Search a file

4<<< List files 0<<<Exit

Enter your choice 1

Enter the file name a

File created

1<<<Create new file 2<<<Delete a file 3<<<Search a file

4<<< List files 0<<<Exit

Enter your choice 1

Enter the file name b

File created

1<<<Create new file 2<<<Delete a file 3<<<Search a file

4<<< List files 0<<<Exit

Enter your choice 1

Enter the file name c

File created

1<<<Create new file 2<<<Delete a file 3<<<Search a file

4<<< List files 0<<<Exit

Enter your choice 4

The files in the directory cse are;

a

b

c

1<<<Create new file 2<<<Delete a file 3<<<Search a file

4<<< List files 0<<<Exit

Enter your choice 3

Enter the file to search b

Search completed

File found at 2 position

1<<<Create new file 2<<<Delete a file 3<<<Search a file

65

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

4<<< List files 0<<<Exit

Enter your choice 2

Enter the file to delete b

File removed

1<<<Create new file 2<<<Delete a file 3<<<Search a file

4<<< List files 0<<<Exit

Enter your choice 4

The files in the directory cse are;

a

c

1<<<Create new file 2<<<Delete a file 3<<<Search a file

4<<< List files 0<<<Exit

Enter your choice 3

Enter the file to search b

Search completed

No such file or directory

1<<<Create new file 2<<<Delete a file 3<<<Search a file

4<<< List files 0<<<Exit

Enter your choice 0

66

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Two Level Directory

PROGRAM

#include<stdio.h>

#include<string.h>

struct dirct{

 char dir[20],file[20][10];

 int findex;

};

void main(){

 int i,j,ch=1,dindex=0,found=0;

 struct dirct d[10];

 char ser[20];

 for(i=0;i<10;i++)

 d[i].findex=0;

 do{

 printf("\n1<<<Create new directory\t2<<<Create new file\n3<<<Delete new file\t\t");

 printf("4<<<Search files\n5<<<List files\t\t\t0<<<Exit\nEnter your choice ");

 scanf("%d",&ch);

 switch(ch){

 case 1: printf("\nEnter the directory name ");

 scanf("%s",d[dindex].dir);

 dindex++;

 printf("Directoiry Created created\n");

 break;

 case 2: printf("\nEnter the directory name ");

 scanf("%s",ser);

 found = 0;

 for(i=0;i<dindex;i++){

 if(!strcmp(ser,d[i].dir))

 {

 printf("\nEnter the file name ");

 scanf("%s",d[i].file[d[i].findex++]);

 printf("File created\n");

67

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 break;

 }

 }

 if(i==dindex){

 printf("\nSearch completed\n");

 printf("No such file or directory\n");

 }

 break;

 case 3: printf("\nEnter the file name ");

 scanf("%s",ser);

 found = 0;

 for(i=0;i<dindex;i++){

 for(j=0;j<d[i].findex;j++){

 if(!strcmp(ser,d[i].file[j]))

 {

 printf("%s is removed\n", d[i].file[j]);

 strcpy(d[i].file[j],d[i].file[d[i].findex-1]);

 d[i].findex--;

 found=1;

 break;

 }

 }

 }

 if(!found){

 printf("\nSearch completed\n");

 printf("No such file or directory\n");

 }

 break;

 case 4: printf("\nEnter the file name ");

 scanf("%s",ser);

 found = 0;

 for(i=0;i<dindex;i++){

 for(j=0;j<d[i].findex;j++){

 if(!strcmp(ser,d[i].file[j]))

 {

68

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 printf("%s is removed\n", d[i].file[j]);

 found=1;

 break;

 }

 }

 }

 if(!found){

 printf("\nSearch completed\n");

 printf("No such file or directory\n");

 }

 break;

 case 5: for(i=0;i<dindex;i++){

 printf("\nThe files in the directory %s are;\n",d[i].dir);

 for(j=0;j<d[i].findex;j++)

 printf("%s\n", d[i].file[j]);

 }

 break;

 }

 }while(ch);

 printf("\n");

}

OUTPUT

1<<<Create new directory 2<<<Create new file

3<<<Delete new file 4<<<Search files

5<<<List files 0<<<Exit

Enter your choice 1

Enter the directory name cse

Directory Created

1<<<Create new directory 2<<<Create new file

3<<<Delete new file 4<<<Search files

5<<<List files 0<<<Exit

Enter your choice 1

Enter the directory name eee

Directoiry Created created

69

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

1<<<Create new directory 2<<<Create new file

3<<<Delete new file 4<<<Search files

5<<<List files 0<<<Exit

Enter your choice 2

Enter the directory name cse

Enter the file name cg

File created

1<<<Create new directory 2<<<Create new file

3<<<Delete new file 4<<<Search files

5<<<List files 0<<<Exit

Enter your choice 2

Enter the directory name cse

Enter the file name csaa

File created

1<<<Create new directory 2<<<Create new file

3<<<Delete new file 4<<<Search files

5<<<List files 0<<<Exit

Enter your choice 2

Enter the directory name eee

Enter the file name cp

File created

1<<<Create new directory 2<<<Create new file

3<<<Delete new file 4<<<Search files

5<<<List files 0<<<Exit

Enter your choice 5

The files in the directory cse are;

cg

csaa

The files in the directory eee are;

cp

1<<<Create new directory 2<<<Create new file

70

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

3<<<Delete new file 4<<<Search files

5<<<List files 0<<<Exit

Enter your choice 4

Enter the file name cp

cp is found

1<<<Create new directory 2<<<Create new file

3<<<Delete new file 4<<<Search files

5<<<List files 0<<<Exit

Enter your choice 3

Enter the file name cg

cg is removed

1<<<Create new directory 2<<<Create new file

3<<<Delete new file 4<<<Search files

5<<<List files 0<<<Exit

Enter your choice 4

Enter the file name cg

Search completed

No such file or directory

1<<<Create new directory 2<<<Create new file

3<<<Delete new file 4<<<Search files

5<<<List files 0<<<Exit

Enter your choice 5

The files in the directory cse are:

csaa

The files in the directory eee are:

cp

Hierarchical Directory

71

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

PAGING

Paging is a memory management scheme that eliminates the need for contiguous allocation of

physical memory. This scheme permits the physical address space of a process to be non –

contiguous.

 Logical Address or Virtual Address (represented in bits): An address generated by the

CPU

 Logical Address Space or Virtual Address Space(represented in words or bytes): The set

of all logical addresses generated by a program

 Physical Address (represented in bits): An address actually available on memory unit

 Physical Address Space (represented in words or bytes): The set of all physical addresses

corresponding to the logical addresses

In computer operating systems, memory paging is a memory management scheme by which a

computer stores and retrieves data from secondary storage[a] for use in main memory.[1] In this

scheme, the operating system retrieves data from secondary storage in same-

size blocks called pages. Paging is an important part of virtual memory implementations in modern

operating systems, using secondary storage to let programs exceed the size of available physical

memory.

https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Computer_data_storage#Secondary_storage
https://en.wikipedia.org/wiki/Computer_data_storage#Secondary_storage
https://en.wikipedia.org/wiki/Computer_data_storage#Primary_storage
https://en.wikipedia.org/wiki/Memory_paging#cite_note-ostep-1-2
https://en.wikipedia.org/wiki/Block_(data_storage)
https://en.wikipedia.org/wiki/Page_(computer_memory)
https://en.wikipedia.org/wiki/Virtual_memory

72

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.9

PAGING TECHNIQUES OF MEMORY MANAGEMENT

AIM

Implement different paging techniques of memory management

PROGRAM

#include<stdio.h>

void main()

{

int memsize=15;

int pagesize,nofpage;

int p[100];

int frameno,offset;

int logadd,phyadd;

int i;

int choice=0;

printf("\nYour memsize is %d ",memsize);

printf("\nEnter page size:");

scanf("%d",&pagesize);

nofpage=memsize/pagesize;

for(i=0;i<nofpage;i++)

{

printf("\nEnter the frame of page%d:",i+1);

scanf("%d",&p[i]);

}

do

{

printf("\nEnter a logical address:");

scanf("%d",&logadd);

frameno=logadd/pagesize;

offset=logadd%pagesize;

phyadd=(p[frameno]*pagesize)+offset;

printf("\nPhysical address is:%d",phyadd);

printf("\nDo you want to continue(1/0)?:");

scanf("%d",&choice);

}while(choice==1);

}

73

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

OUTPUT:

Your memsize is 15

Enter page size:5

Enter the frame of page1:2

Enter the frame of page2:4

Enter the frame of page3:7

Enter a logical address:3

Physical address is:13

Do you want to continue(1/0)?:1

Enter a logical address:1

Physical address is:11

Do you want to continue(1/0)?:0

74

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

FILE ALLOCATION STRATEGIES

The purpose of file allocation in operating systems is first of all the efficient use of the disk space

or efficient disk utilization.

75

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

76

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.10

FILE ALLOCATION STRATEGIES

AIM

Simulate following file allocation strategies.

a) Sequential

b) Indexed

c) Linked

PROGRAM

Sequencial

#include < stdio.h>

//#include<conio.h>

void main()

{

int f[50], i, st, len, j, c, k, count = 0;

//clrscr();

for(i=0;i<50;i++)

f[i]=0;

printf("Files Allocated are : \n");

x: count=0;

printf(“Enter starting block and length of files: ”);

scanf("%d%d", &st,&len);

for(k=st;k<(st+len);k++)

if(f[k]==0)

count++;

if(len==count)

{

for(j=st;j<(st+len);j++)

if(f[j]==0)

{

f[j]=1;

printf("%d\t%d\n",j,f[j]);

}

if(j!=(st+len-1))

printf(” The file is allocated to disk\n");

}

else

printf(” The file is not allocated \n");

printf("Do you want to enter more file(Yes - 1/No - 0)");

scanf("%d", &c);

if(c==1)

77

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

goto x;

else

//exit();

return 0

//getch();

}

OUTPUT

Files Allocated are :

Enter starting block and length of files: 14 3

14 1

15 1

16 1

The file is allocated to disk

Do you want to enter more file(Yes - 1/No - 0)1

Enter starting block and length of files: 14 1

The file is not allocated

Do you want to enter more file(Yes - 1/No - 0)1

Enter starting block and length of files: 14 4

The file is not allocated

Do you want to enter more file(Yes - 1/No - 0)0

Indexed

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

void main()

{

int f[50], index[50],i, n, st, len, j, c, k, ind,count=0;

clrscr();

for(i=0;i<50;i++)

f[i]=0;

x:printf("Enter the index block: ");

scanf("%d",&ind);

if(f[ind]!=1)

{

printf("Enter no of blocks needed and no of files for the index %d on the disk : \n", ind);

scanf("%d",&n);

}

else

{

printf("%d index is already allocated \n",ind);

goto x;

}

y: count=0;

for(i=0;i<n;i++)

{

scanf("%d", &index[i]);

78

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

if(f[index[i]]==0)

count++;

}

if(count==n)

{

for(j=0;j<n;j++)

f[index[j]]=1;

printf("Allocated\n");

printf("File Indexed\n");

for(k=0;k<n;k++)

printf("%d-------->%d : %d\n",ind,index[k],f[index[k]]);

}

else

{

printf("File in the index is already allocated \n");

printf("Enter another file indexed");

goto y;

}

printf("Do you want to enter more file(Yes - 1/No - 0)");

scanf("%d", &c);

if(c==1)

goto x;

else

exit(0);

getch();

}

OUTPUT

Enter the index block: 5

Enter no of blocks needed and no of files for the index 5 on the disk :

4

1 2 3 4

Allocated

File Indexed

5-------->1 : 1

5-------->2 : 1

5-------->3 : 1

5-------->4 : 1

Do you want to enter more file(Yes - 1/No - 0)1

Enter the index block: 4

4 index is already allocated

Enter the index block: 6

Enter no of blocks needed and no of files for the index 6 on the disk :

2

7 8

A5llocated

File Indexed

6-------->7 : 1

6-------->8 : 1

Do you want to enter more file(Yes - 1/No - 0)0

79

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Linked

#include<stdio.h>

#include<conio.h>

struct file

{

 char fname[10];

 int start,size,block[10];

}f[10];

main()

{

 int i,j,n;

 clrscr();

 printf("Enter no. of files:");

 scanf("%d",&n);

 for(i=0;i<n;i++)

 {

 printf("Enter file name:");

 scanf("%s",&f[i].fname);

 printf("Enter starting block:");

 scanf("%d",&f[i].start);

 f[i].block[0]=f[i].start;

 printf("Enter no.of blocks:");

 scanf("%d",&f[i].size);

 printf("Enter block numbers:");

 for(j=1;j<=f[i].size;j++)

 {

 scanf("%d",&f[i].block[j]);

 }

 }

 printf("File\tstart\tsize\tblock\n");

 for(i=0;i<n;i++)

 {

 printf("%s\t%d\t%d\t",f[i].fname,f[i].start,f[i].size);

 for(j=1;j<=f[i].size-1;j++)

 printf("%d--->",f[i].block[j]);

 printf("%d",f[i].block[j]);

 printf("\n");

 }

 getch();

}

80

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

OUTPUT

Enter no. of files: 2

Enter file name:a

Enter starting block:1

Enter no. of blocks:2

Enter block number:1

2

Enter filr name: b

Enter starting block:5

Enter no. of blocks:2

Enter block number:3

4

File start size block

a 1 2 1-->2

b 5 2 3-->2

81

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

MEMORY ALLOCATION TECHNIQUES

. First Fit: In the first fit, the partition is allocated which is the first sufficient block
from the top of Main Memory. It scans memory from the beginning and chooses
the first available block that is large enough. Thus it allocates the first hole that is
large enough.

2. Best Fit Allocate the process to the partition which is the first smallest sufficient
partition among the free available partition. It searches the entire list of holes to
find the smallest hole whose size is greater than or equal to the size of the
process.

3. Worst Fit Allocate the process to the partition which is the largest sufficient
among the freely available partitions available in the main memory. It is opposite
to the best-fit algorithm. It searches the entire list of holes to find the largest hole
and allocate it to process.

82

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Although best fit minimizes the wastage space, it consumes a lot of processor

time for searching the block which is close to the required size. Also, Best-fit may

perform poorer than other algorithms in some cases.

83

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

84

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

ASSEMBLER

 System software which is used to convert assembly language program to its equivalent

object code. Input to the assembler is a source code written in assembly language. Output is

the object code. Design of assembler depends upon the machine architecture as the language

used is mnemonic language.

Analysis Phase

 Build the Symbol table.

 Separate labels, opcodes and operand fields in a statement.

 Check correctness of opcodes by looking at the contents of the mnemonics table.

 Update contents of location counter based on the length of each instruction.

Synthesis Phase

 Look at the mnemonics table and get the opcode corresponding to the mnemonic.

 Obtain the address of a memory operand from the symbol table.

 Synthesize the machine instruction.

TYPES OF ASSEMBLER

1. Single Pass Assembler

2. Two Pass Assembler

Single Pass Assembler

 The assembler reads the source file once.

 During the single pass, the assembler handles both label definitions and assembly.

 Here whole process of scanning, parsing and object code conversion is done in single pass.

85

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 The only problem with this method is resolving forward reference.

 One pass assembler is used when it is necessary or desirable to avoid a second pass over the

source program.

 The external storage for the intermediate file between two passes is slow or is inconvenient

to use.

 One-pass/ Single pass assemblers are used when

o It is necessary or desirable to avoid a second pass over the source program.

o The external storage for the intermediate file between two passes is slow or is

inconvenient to use

 Main problem: forward references to both data and instructions

o One simple way to eliminate this problem: require that all areas be defined before

they are referenced.

o It is possible, although inconvenient, to do so for data items.

o Forward jump to instruction items cannot be easily eliminated.

Two Pass Assembler

 Here there are two passes

 It resolves the forward references and then converts in to the object code.

 Here forward references in symbol definition are not allowed.

 Symbol definition must be completed in pass 1.

(Forward reference: When we use the symbol or literal (identifier) before declaring it and the

error caused due to this is called a Forward Reference Problem. For example:- int c, b=10;)

 In the first pass it reads the entire source file, looking only the label definitions.

 All labels are collected, assigned values and placed in the symbol table in this pass.

 No instructions are assembled and at the end of the pass, the symbol table should contain all

the labels defined in the program.

 In the second pass, the instructions are again read and are assembled using the symbol table.

Pass 1 (Define Symbols):

i. Assign address to all statements in program

ii. Save the values assigned to all labels for use in pass 2.

iii. Perform some processing of assembler functions

86

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pass 2 (Assemble Instructions and Generate Object Code):

i. Assembler instructions.

ii. Generate data values defined by BYTE, WORD, etc.

iii. Perform processing of assembler directives not done during pass 1.

iv. Write object program and assembly listing.

87

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.10

PASS ONE OF TWO PASS ASSEMBLER

AIM

Write a C program to implement pass one of two pass assembler

PROGRAM

#include<stdio.h>

#include<string.h>

void main()

{

FILE *f1,*f2,*f3,*f4;

char s[100],lab[30],opcode[30],opa[30],opcode1[30],opa1[30];

int locctr,x=0;

f1=fopen("input.txt","r");

f2=fopen("opcode.txt","r");

f3=fopen("out1.txt","w");

f4=fopen("sym1.txt","w");

while(fscanf(f1,"%s%s%s",lab,opcode,opa)!=EOF)

{

 if(strcmp(lab,"**")==0)

 {

 if(strcmp(opcode,"START")==0)

 {

 fprintf(f3,"%s %s %s",lab,opcode,opa);

 locctr=(atoi(opa));

 }

 else

 {

 rewind(f2);

 x=0;

 while(fscanf(f2,"%s%s",opcode1,opa1)!=EOF)

 {

 if(strcmp(opcode,opcode1)==0)

 {

 x=1;

 }

 }

 if(x==1)

88

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 {

 fprintf(f3,"\n %d %s %s %s",locctr,lab,opcode,opa);

 locctr=locctr+3;

 }

 }

 }

 else

 {

 if(strcmp(opcode,"RESW")==0)

 {

 fprintf(f3,"\n %d %s %s %s",locctr,lab,opcode,opa);

 fprintf(f4,"\n %d %s",locctr,lab);

 locctr=locctr+(3*(atoi(opa)));

 }

 else if(strcmp(opcode,"WORD")==0)

 {

 fprintf(f3,"\n %d %s %s %s",locctr,lab,opcode,opa);

 fprintf(f4,"\n %d %s",locctr,lab);

 locctr=locctr+3;

 }

 else if(strcmp(opcode,"BYTE")==0)

 {

 fprintf(f3,"\n %d %s %s %s",locctr,lab,opcode,opa);

 fprintf(f4,"\n %d %s",locctr,lab);

 locctr=locctr+1;

 }

 else if(strcmp(opcode,"RESB")==0)

 {

 fprintf(f3,"\n %d %s %s %s",locctr,lab,opcode,opa);

 fprintf(f4,"\n %d %s",locctr,lab);

 locctr=locctr+1;

 }

 else

 {

 fprintf(f3,"\n %d %s %s %s",locctr,lab,opcode,opa);

 fprintf(f4,"\n %d %s",locctr,lab);

 locctr=locctr+(atoi(opa));

 }

 }

}

}

89

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

INPUT FILES

input.txt

** START 2000

** LDA FIVE

** STA ALPHA

** LDCH CHARZ

** STCH C1

ALPHA RESW 1

FIVE WORD 5

CHARZ BYTE C'Z'

C1 RESB 1

** END **

opcode.txt

START *

LDA 03

STA 0F

LDCH 53

STCH 57

END

OUTPUT FILES

out1.txt

** START 2000

 2000 ** LDA FIVE

 2003 ** STA ALPHA

 2006 ** LDCH CHARZ

 2009 ** STCH C1

 2012 ALPHA RESW 1

 2015 FIVE WORD 5

 2018 CHARZ BYTE C'Z'

 2019 C1 RESB 1

 2020 ** END **

sym1.txt

 2012 ALPHA

 2015 FIVE

 2018 CHARZ

 2019 C1

90

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.11

PASS TWO OF TWO PASS ASSEMBLER

AIM

Write a program to implement pass one of two pass assembler

PROGRAM

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

void main()

 {

char opcode[20],operand[20],symbol[20],label[20],code[20],mnemonic[25], character,

add[20],objectcode[20];

int flag,flag1,locctr,location,loc;

FILE *fp1,*fp2,*fp3,*fp4;

fp1=fopen("out3.txt","r"); fp2=fopen("twoout.txt","w");

fp3=fopen("opcode.txt","r"); fp4=fopen("sym1.txt","r");

fscanf(fp1,"%s%s%s",label,opcode,operand);

if(strcmp(opcode,"START")==0)

{ fprintf(fp2,"%s\t%s\t%s\n",label,opcode,operand);

fscanf(fp1,"%d%s%s%s",&locctr,label,opcode,operand);

}

while(strcmp(opcode,"END")!=0)

{ flag=0;

fscanf(fp3,"%s%s",code,mnemonic);

while(strcmp(code,"END")!=0)

{ if((strcmp(opcode,code)==0) && (strcmp(mnemonic,"*"))!=0)

{ flag=1;

break;

}

fscanf(fp3,"%s%s",code,mnemonic);

}

if(flag==1)

{ flag1=0; rewind(fp4);

while(!feof(fp4))

91

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

{

fscanf(fp4,"%s%d",symbol,&loc);

if(strcmp(symbol,operand)==0)

{

flag1=1; break;

} }

if(flag1==1)

{

sprintf(add,"%d",loc);

strcpy(objectcode,strcat(mnemonic,add));

} }

else if(strcmp(opcode,"BYTE")==0 || strcmp(opcode,"WORD")==0)

{

if((operand[0]=='C') || (operand[0]=='X'))

{

character=operand[2];

sprintf(add,"%d",character);

strcpy(objectcode,add);

}

else

{

strcpy(objectcode,add);

} }

else

strcpy(objectcode,"\0");

fprintf(fp2,"%s\t%s\t%s\t%d\t%s\n",label,opcode,operand,locctr,objectcode);

fscanf(fp1,"%d%s%s%s",&locctr,label,opcode,operand);

}

fprintf(fp2,"%s\t%s\t%s\t%d\n",label,opcode,operand,locctr);

fclose(fp1);

fclose(fp2);

fclose(fp3);

 fclose(fp4);

}

92

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

INPUT FILES

opcode.txt

START *

LDA 03

STA 0F

LDCH 53

STCH 57

END +

out3.txt

** START 2000

2000 ** LDA FIVE

2003 ** STA ALPHA

2006 ** LDCH CHARZ

2009 ** STCH C1

2012 ALPHA RESW 1

2015 FIVE WORD 5

2018 CHARZ BYTE C'Z'

2019 C1 RESB 1

2020 ** END **

sym1.txt

 2012 ALPHA

 2015 FIVE

 2018 CHARZ

 2019 C1

OUTPUT FILES

twoout.txt

** START 2000

** LDA FIVE 2000 032018

** STA ALPHA 2003 0F2015

** LDCH CHARZ 2006 532019

** STCH C1 2009 572019

ALPHA RESW 1 2012

FIVE WORD 5 2015 2019

CHARZ BYTE C'Z' 2018 90

C1 RESB 1 2019

** END ** 2020

93

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

1. Define the basic functions of assembler.

* Translating mnemonic operation codes to their machine language

equivalents.

* Assigning machine addresses to symbolic labels used by the

programmer.

2. What is meant by assembler directives? Give example.

These are the statements that are not translated into machine instructions, but they provide

instructions to assembler itself.

example START,END,BYTE,WORD,RESW and RESB.

3. What are forward references?

It is a reference to a label that is defined later in a program.

Consider the statement

10 1000 STL RETADR

. . . .

. . . .

80 1036 RETADR RESW 1

The first instruction contains a forward reference RETADR. If we attempt to translate the program

line by line, we will unable to process the statement in line10 because we do not know the address

that will be assigned to RETADR .The address is assigned later(in line 80) in the program.

4. What are the three different records used in object program?

The header record, text record and the end record are the three different records used in object

program.

The header record contains the program name, starting address and

length of the program.

Text record contains the translated instructions and data of the program.

End record marks the end of the object program and specifies the address in the program where

execution is to begin.

5. What is the need of SYMTAB (symbol table) in assembler?

The symbol table includes the name and value for each symbol in the

source program, together with flags to indicate error conditions. Some times it may contain details

about the data area. SYMTAB is usually organized as a hash table for efficiency of insertion and

retrieval.

6. What is the need of OPTAB (operation code table) in assembler?

The operation code table contains the mnemonic operation code and its

machine language equivalent. Some assemblers it may also contain information about instruction

format and length. OPTAB is usually organized as a hash table, with mnemonic operation code as

the key.

10. Write the steps required to translate the source program to object program.

• Convert mnemonic operation codes to their machine language

94

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

equivalents.

• Convert symbolic operands to their equivalent machine addresses

• Build the machine instruction in the proper format.

• Convert the data constants specified in the source program into their internal machine

representation

• Write the object program and assembly listing.

11. What is the use of the variable LOCCTR (location counter) in assembler?

This variable is used to assign addresses to the symbols. LOCCTR is

initialized to the beginning address specified in the START statement. After each source statement

is processed the length of the assembled instruction or data area to be generated is added to

LOCCTR and hence whenever we reach a label in the source program the current value of

LOCCTR gives the address associated with the label.

12. Define load and go assembler.

One pass assembler that generates their object code in memory for

immediate execution is known as load and go assembler. Here no object programmer is written out

and hence no need for loader.

13. What are the two different types of jump statements used in MASM assembler?

• Near jump

A near jump is a jump to a target in the same segment and it is

assembled by using a current

code segment CS.

• Far jump

A far jump is a jump to a target in a different code segment and it is

assembled by using different segment registers .

15. Differentiate the assembler directives RESW and RESB.

RESW –It reserves the indicated number of words for data area.

Eg: 10 1003 THREE RESW 1

In this instruction one word area (3 bytes) is reserved for the symbol

THREE. If the memory is byte addressable then the address assigned for the next symbol is 1006.

RESB –It reserves the indicated number of bytes for data area.

Eg: 10 1008 INPUT RESB 1

In this instruction one byte area is reserved for the symbol INPUT .Hence the address assigned for

the next symbol is 1009.

17. Write down the pass numbers (PASS 1/ PASS 2) of the following activities that occur in a two

pass assembler:

a. Object code generation

b. Literals added to literal table

c. Listing printed

d. Address location of local symbols

95

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Answer:

a. Object code generation - PASS 2

b. Literals added to literal table – PASS 1

c. Listing printed – PASS2

d. Address location of local symbols – PASS1

18. What is meant by machine independent assembler features?

The assembler features that do not depend upon the machine

architecture are known as machine independent assembler features.

Eg: program blocks, Literals.

20. What is meant by external references?

Assembler program can be divided into many sections known as control

sections and each control section can be loaded and relocated independently of the others. If the

instruction in one control section need to refer instruction or data in another control section.the

assembler is unable to process these references in normal way. Such

references between control are called external references.

25. What is the use of the assembler directive START?

The assembler directive START gives the name and starting address of

the program.

The format is

PN START 1000

Here

PN – Name of the program

1000 - Starting address of the program.

26. What are the basic functions of loaders?

• Loading – brings the object program into memory for execution

• Relocation – modifies the object program so that it can be loaded at an address different from the

location originally specified

• Linking – combines two or more separate object programs and also

supplies the information needed to reference them.

96

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

LOADER AND LINKER

 The source program written in assembly language or high level language will be converted

to object program, which is in the machine language form for execution.

 This conversion is either from assembler or from compiler, contains translated instructions

and data values from the source program, or specific addresses in primary memory where

these items are to be loaded for execution.

 This contain three processes:

1. Loading- It allocates memory location and brings the object program in to memory for

execution.

2. Linking- It combines two or more separate object programs and supplies the information

needed to allow references between them.

3. Relocation- It modifies the object program so that it can be loaded at address different

from the location originally specified.

LOADER: It is a utility of an operating system. It copies program from a storage device to a

computer’s main memory, where the program can then be executed.

Various Steps Loader Performs

1. Read executable file’s header to determine the size of text and data segments.

2. Create new address space for the program.

3. Copies instructions and add data in to address space.

4. Copies arguments passed to the program on the stack.

5. Initializes the machine registers including the stack pointer.

6. Jumps to a start-up routine that copies the program’s arguments from the stack to registers

and calls the program’s main routine.

Types of Loader

1. Assemble and Go Loader

2. Relocating Loader (Relative Loader)

3. Absolute Loader (Bootstrap Loader)

4. Direct Linking Loader

ABSOLUTE LOADER

 It is also known as Bootstrap Loader.

97

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 It is the simplest loader.

 It can read a machine language program from the specified back up storage and place it in

memory starting from a pre- determined address.

 Machine language program so loaded will work correctly only if it is loaded starting from

the specified address.

 Absolute type of loader is impractical, there are lots of complications involved in loading

the program.

 “Bootstrap loader” is an example of absolute loader.

Advantage:

o It simply performs input and output operation to load a program into the main

memory.

o It is coded in very few machine instructions.

o Program is stored in the library in their ready to execute form. Such a library is

called a Phase Library.

Disadvantage:

o Programmer must explicitly specify the assembler the memory where the program is

to be loaded.

o Handling multiple subroutine become difficult since the programmer must specify

the address of the routines whenever they are referenced to perform subroutine

linkage.

o When dealing with lots of subroutines the manual shuffling and re-shuffling of

memory address references in the routines become tedious and complex.

Design of Absolute Loader

 The operation of absolute loader is simple.

 Object code is loaded to specified locations in the memory.

 At the end the loader jumps to the specified address to begin execution of the loaded

program.

 Initially the header record is checked to verify that the correct program has been

presented for loading

 As each text record is read the object code it contains is moved to the indicated memory

location.

When the end record is encountered loader jumps to the specified i.e. location starting location of

the program to begin execution.

98

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

SIMPLE BOOTSTRAP LOADER

 It is a special type of absolute loader that is executed when computer is first turned o or

restarted.

 The bootstrap loads the first program to be run by the computer- usually by operating

systems.

Bootstrap Loader for SIC/XE

 The bootstrap begins at address 0 in the memory of the machine.

 It loads the operating system starting at address 80.

 Because this loader is used in a unique situation, the program to be loaded can be

represented in very simple format:

i. Each byte of object code to be loaded is represented on device F1 as two

hexadecimal digits.

ii. The object code from device F1 is always loaded into consecutive bytes of memory,

starting at address 80.

iii. After loading, the bootstrap jumps to address 80 to execute loaded program

Algorithm

 Clear the accumulator content.

 The index register ‘X’ is initialized to the hexadecimal value of 80.

 Test the input device to see if it is ready.

 When the input device becomes ready, read an ASCII character code.

 The input characters that have ASCII code less than hexadecimal 30 is skipped which will

prevent the bootstrap, from misinterpreting any control bytes as end of file marker.

 Convert the ASCII character code to hexadecimal digit.

 Save the hexadecimal digit in register ‘S’ and left shift it 4 bit position.

 Repeat the processing from step 4 to 6 to get the next character from the input device and

convert it to hexadecimal form.

 The hexadecimal value of the 2nd character read is added with the left shifted hexadecimal

value of the 1st character which is already stored in register ‘S’.

 The resultant byte is stored in the address currently in register ‘X’.

 Increment the value of index register by 1, to make it hold the next address location

 Repeat steps 3 to 11 until an end of the file is encountered.

 If the character read indicate the end of the file, jump to the starting location of the program

just loaded to begin the program execution.

Repeat the steps from 3 to 13 until there is no input

99

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.12

ABSOLUTE LOADER

AIM

Write a C program to implement Absolute Loader

PROGRAM

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

void main()

{

 FILE *fp;

 int i,addr1,l,j,staddr1;

 char name[10],line[50],name1[10],addr[10],rec[10],ch,staddr[10];

 printf("enter program name:");

 scanf("%s",name);

 fp=fopen("objectcode.txt","r");

 fscanf(fp,"%s",line);

 for(i=2,j=0;i<8,j<6;i++,j++)

 name1[j]=line[i];

 name1[j]='\0';

 printf("name from obj. %s\n",name1);

 if(strcmp(name,name1)==0)

 {

 fscanf(fp,"%s",line);

 do

 {

 if(line[0]=='T')

 {

 for(i=2,j=0;i<8,j<6;i++,j++)

 staddr[j]=line[i];

 staddr[j]='\0';

 staddr1=atoi(staddr);

 i=12;

 while(line[i]!='$')

 {

 if(line[i]!='^')

100

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 {

 printf("00%d \t %c%c\n", staddr1,line[i],line[i+1]);

 staddr1++;

 i=i+2;

 }

 else i++;

 }

 }

 else if(line[0]='E')

 printf("jump to execution address:%s",&line[2]);

 fscanf(fp,"%s",line);

 }while(!feof(fp));

 }

 fclose(fp);

}

objectcode.txt

H^SAMPLE^001000^0035

T^001000^0C^001003^071009$

T^002000^03^111111$

H^SAMPLE^001000^0035

T^001000^0C^001003^071009$

T^002000^03^111111$

E^001000

OUTPUT

enter program name:SAMPLE

name from obj. SAMPLE

001000 00

001001 10

001002 03

001003 07

001004 10

001005 09

002000 11

002001 11

002002 11

jump to execution address:001000

101

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.13

RELOCATING LOADER

AIM

Write a C program to implement relocating loader

PROGRAM

#include<stdio.h>

#include<conio.h>

#include<string.h>

#include<stdlib.h>

void convert(char h[12]);

char bitmask[12];

char bit[12]={0};

void main()

{char add[6],length[10],input[10],binary[12],relocbit,ch,pn[5];

int start,inp,len,i,address,opcode,addr,actualadd,tlen;

FILE *fp1,*fp2;

clrscr();

printf("\n\n Enter the actual starting address : ");

scanf("%x",&start);

fp1=fopen("RLIN.txt","r");

fp2=fopen("RLOUT.txt","w");

fscanf(fp1,"%s",input);

fprintf(fp2," ----------------------------\n");

fprintf(fp2," ADDRESS\tCONTENT\n");

fprintf(fp2," ----------------------------\n");

while(strcmp(input,"E")!=0)

{

if(strcmp(input,"H")==0)

{

fscanf(fp1,"%s",pn);

fscanf(fp1,"%x",add);

fscanf(fp1,"%x",length);

fscanf(fp1,"%s",input);

}

if(strcmp(input,"T")==0)

{

fscanf(fp1,"%x",&address);

fscanf(fp1,"%x",&tlen);

102

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

fscanf(fp1,"%s",bitmask);

address+=start;

convert(bitmask);

len=strlen(bit);

if(len>=11)

len=10;

for(i=0;i<len;i++)

{

fscanf(fp1,"%x",&opcode);

fscanf(fp1,"%x",&addr);

relocbit=bit[i];

if(relocbit=='0')

actualadd=addr;

else

actualadd=addr+start;

fprintf(fp2,"\n %x\t\t%x%x\n",address,opcode,actualadd);

address+=3;

}

fscanf(fp1,"%s",input);

}

}

fprintf(fp2," ----------------------------\n");

fcloseall();

printf("\n\n The contents of output file(RLOUT.TXT n\n");

fp2=fopen("RLOUT.txt","r");

ch=fgetc(fp2);

while(ch!=EOF)

{

printf("%c",ch);

ch=fgetc(fp2);

}

fclose(fp2);

getch();

}

void convert(char h[12])

{

int i,l;

strcpy(bit,"");

l=strlen(h);

for(i=0;i<l;i++)

{

switch(h[i])

{

case '0':

103

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 strcat(bit,"0");

break;

case '1':

 strcat(bit,"1");

break;

case '2':

 strcat(bit,"10");

break;

case '3':

 strcat(bit,"11");

break;

case '4':

 strcat(bit,"100");

break;

case '5':

 strcat(bit,"101");

break;

case '6':

 strcat(bit,"110");

break;

case '7':

 strcat(bit,"111");

break;

case '8':

 strcat(bit,"1000");

break;

case '9':

 strcat(bit,"1001");

break;

case 'A':

 strcat(bit,"1010");

break;

case 'B':

 strcat(bit,"1011");

break;

case 'C':

 strcat(bit,"1100");

break;

case 'D':

 strcat(bit,"1101");

break;

case 'E':

 strcat(bit,"1110");

break;

104

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

case 'F':

 strcat(bit,"1111");

break;

}

}

}

INPUT file:

RLIN.TXT

H COPY 000000 00107A

T 000000 1E FFC 14 0033 48 1039 10 0036 28 0030 30 0015 48 1061 3C 0003 20 002A 1C 0039

30 002D

T 002500 15 E00 1D 0036 48 1061 18 0033 4C 1000 80 1000 60 1003

E 000000

OUTPUT

Enter the actual starting address : 4000

The contents of output file(RLOUT.TXT):

ADDRESS CONTENT

4000 144033

4003 485039

4006 104036

4009 284030

400c 304015

400f 485061

4012 3c4003

4015 20402a

4018 1c4039

401b 30402d

6503 1d4036

6506 184033

6509 4c1000

650c 801000

650f 601003

105

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

MACRO PROCESSORS

A macro instruction (macro) is a notational convenience for the programmer. It allow the

programmer to write a shorthand version of a program . A macro represents a commonly used

group of statements in the source programming language. It replaces each macro instruction with

the corresponding group of source language statements.

A macro processor Essentially involve the substitution of one group of characters or lines

for another. Normally, it performs no analysis of the text it handles. It doesn’t concern the meaning

of the involved statements during macro expansion The design of a macro processor generally is

machine independent.

Macro processor should processes the

o Macro definitions : Define macro name, group of instructions

o Macro invocation (macro calls): A body is simply copied or substituted at the point of call

Two new assembler directives are used in macro definition:

MACRO: identify the beginning of a macro definition

MEND: identify the end of a macro definition

label op operands

name MACRO parameters

:

body

:

MEND

Parameters: the entries in the operand field identify the parameters of the macro instruction . We

require each parameter begins with ‘&’

Body: the statements that will be generated as the expansion of the macro.

Prototype for the macro: The macro name and parameters define a pattern or prototype for the

macro instructions used by the programmer

One-pass macro processor

Two-pass macro processor

 All macro definitions are processed during the first pass.

 All macro invocation statements are expanded during the second pass.

Nested macro definitions - The body of a macro contains definitions of other macros because all

macros would have to be defined during the first pass before any macro invocations were expanded.

106

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.16

TWO PASS MACRO PROCESSOR

AIM

Write a C program to implement two pass macro processor

PROGRAM

Pass one of two pass macro processor

#include<stdio.h>

#include<string.h>

void main()

{

 char macros[20][10], label[20],opcode[20],operand[20];

 int i, j, n,m=0;

 FILE *fp1, *fp[10];

 fp1=fopen("inputm.txt","r");

 fscanf(fp1,"%s%s%s",label,opcode,operand);

 while(strcmp(opcode,"END")!=0)

 {

 if(!strcmp(opcode,"MACRO")){

 fp[m]=fopen(operand,"w");

 m++;

 fscanf(fp1,"%s%s%s",label,opcode,operand);

 while(strcmp(opcode,"MEND")!=0){

 fprintf(fp[m-1],"%s\t%s\t%s\n",label,opcode,operand);

 fscanf(fp1,"%s%s%s",label,opcode,operand);

 }

 }

 fscanf(fp1,"%s%s%s",label,opcode,operand);

 }

}

INPUT FILES

inputm.txt

** MACRO m1

** LDA ALPHA

** STA BETA

** MEND **

** MACRO m2

107

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

** MOV a,b

** MEND **

** START 1000

** LDA a

** CALL m1

** CALL m2

** END **

OUTPUT FILES

m1.txt

** LDA ALPHA

** STA BETA

m2.txt

** MOV a,b

Pass two of two pass assemblers

PROGRAM

#include<stdio.h>

#include<string.h>

void main()

{

 char macros[20][10], label[20],opcode[20],operand[20];

 int i, j, n,m=0;

 FILE *fp1, *fp[10],*fp2;

 fp1=fopen("inputm.txt","r");

 fp2=fopen("macro_out.txt","w");

 fscanf(fp1,"%s%s%s",label,opcode,operand);

 while(strcmp(opcode,"END")!=0)

 {

 if(!strcmp(opcode,"CALL"))

 {

 fp[m]=fopen(operand,"r");

 m++;

 fscanf(fp[m-1],"%s%s%s",label,opcode,operand);

 while(!feof(fp[m-1]))

 {

 fprintf(fp2,"%s\t%s\t%s\n",label,opcode,operand);

 fscanf(fp[m-1],"%s%s%s",label,opcode,operand);

 }

 }

108

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 else

 {

 fprintf(fp2,"%s\t%s\t%s\n",label,opcode,operand);

 }

 fscanf(fp1,"%s%s%s",label,opcode,operand);

 }

 fprintf(fp2,"%s\t%s\t%s\n",label,opcode,operand);

}

INPUT FILES

inputm.txt

** MACRO m1

** LDA ALPHA

** STA BETA

** MEND **

** MACRO m2

** MOV a,b

** MEND **

** START 1000

** LDA a

** CALL m1

** CALL m2

** END **

OUTPUT FILES

m1.txt

** LDA ALPHA

** STA BETA

m2.txt

** MOV a,b

output file

** MACRO m1

** LDA ALPHA

** STA BETA

** MEND **

** MACRO m2

** MOV a,b

** MEND **

** START 1000

** LDA a

** END **

Pgm.No.17

109

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

SINGLE PASS MACRO PROCESSOR

AIM

Write a C program to implement single pass macro processor

PROGRAM

#include<stdio.h>

#include<conio.h>

#include<ctype.h>

#include<string.h>

int m=0,i,j,flag=0;

char c,*s1,*s2,*s3,*s4,str[50]=" ",str1[50]=" ";

char mac[10][10];

void main()

{

FILE *fpm=fopen("macro.txt","r");

FILE *fpi=fopen("minput.txt","r");

FILE *fpo=fopen("moutput.txt","w");

clrscr();

while(!feof(fpm))

{

fgets(str,50,fpm);

s1=strtok(str," ");

s2=strtok(NULL," ");

if(strcmp(s1,"MACRO")==0)

{

strcpy(mac[m],s2);

m++;

}

s1=s2=NULL;

}

fgets(str,50,fpi);

while(!feof(fpi))

{

flag=0;

strcpy(str1,str);

for(i=0;i<m;i++)

{

if(strcmp(str1,mac[i])==0)

{

110

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

rewind(fpm);

while(!feof(fpm))

{

fgets(str,50,fpm);

s2=strtok(str," ");

s3=strtok(NULL," ");

if(strcmp(s2,"MACRO")==0&&strcmp(s3,str1)==0)

{

fgets(str,50,fpm);

strncpy(s4,str,4);

s4[4]='\0';

while(strcmp(s4,"MEND")!=0)

{

fprintf(fpo,"%s",str);

printf("\n####%s",str);

fgets(str,50,fpm);

strncpy(s4,str,4);

s4[4]='\0';

}

}

}

flag=1;

break;

}

}

if(flag==0)

{

fprintf(fpo,"%s",str);

printf("%s",str);

}

fgets(str,50,fpi);

}

fclose(fpm);

fclose(fpi);

fclose(fpo);

}

INPUT FILES

Macro.txt

MACRO ADD1

MOV A,B

ADD C

111

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

MEND

MACRO SUB1

STORE C

MEND

MInput.txt

MOV B,10

MOV C,20

ADD1

MUL C

SUB1

END

OUTPUT

MOutput.txt

MOV B,10

MOV C,20

MOV A,B

ADD C

MUL C

STORE C

END

112

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

VIVA QUESTIONS

1. Define macro processor.

Macro processor is system software that replaces each macro instruction with the corresponding

group of source language statements. This is also called as expanding of macros.

2. What do macro expansion statements mean?

These statements give the name of the macro instruction being invoked

and the arguments to be used in expanding the macros. These statements are also known as macro

call.

3. What are the directives used in macro definition?

MACRO - it identifies the beginning of the macro definition

MEND - it marks the end of the macro definition

4. What are the data structures used in macro processor?

DEFTAB – the macro definitions are stored in a definition table i.e. it contains a macro prototype

and the statements that make up the macro body.

NAMTAB – it is used to store the macro names and it contains two

pointers for each macro instruction which indicate the starting and end location of macro definition

in DEFTAB. it also serves as an index to DEFTAB

ARGTAB – it is used to store the arguments during the expansion of macro invocations.

5. Define conditional macro expansion.

If the macro is expanded depends upon some conditions in macro

definition (depending on the arguments supplied in the macro expansion) then it is called as

conditional macro expansion.

6. What is the use of macro time variable?

Macro time variable can be used to store working values during the macro expansion. Any symbol

that begins with the character & and then is not a macro instruction parameter is assumed to be a

macro time variable.

7. What are the statements used for conditional macro expansion?

IF-ELSE-ENDIF statement

WHILE-ENDW statement

8. What is meant by positional parameters?

If the parameters and arguments were associated with each other

according to their positions in the macro prototype and the macro invocation statement, then these

parameters in macro definitions are called as positional parameters.

113

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

10. What are known as nested macro call?

The statement, in which a macro calls on another macro, is called nested macro call. In the nested

macro call, the call is done by outer macro and the macro called is the inner macro.

11. How the macro is processed using two passes?

Pass1: processing of definitions

Pass 2:actual-macro expansion.

12. Give the advantage of line by line processors.

• It avoids the extra pass over the source program during assembling.

• It may use some of the utility that can be used by language translators so that can be loaded once.

13. What is meant by line by line processor?

This macro processor reads the source program statements, process the

statements and then the output lines are passed to the language translators as they are generated,

instead of being written in an expanded file.

14. Give the advantages of general-purpose macro processors.

• The programmer does not need to learn about a macro facility for each compiler.

• Overall saving in software development cost and maintenance cost.

15. What is meant by general-purpose macro processors?

The macro processors that are not dependent on any particular

programming language, but can be used with a variety of different languages are known as general

purpose macro processors.

Eg. The ELENA macro processor.

16. What are the important factors considered while designing general purpose macro processors?

• comments

• grouping of statements

• tokens

• syntax used for macro definitions

18. How the nested macro calls are executed?

The execution of nested macro call follows the LIFO rule. In case of nested macro calls the

expansion of the latest macro call is completed first.

19. Mention the tasks involved in macro expansion.

• identify the macro calls in the program

• the values of formal parameters are identified

• maintain the values of expansion time variables declared in a macro

• expansion time control flow is organized

• determining the values of sequencing symbols

114

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

• expansion of a model statement is performed

20. How to design the pass structure of a macro assembler?

To design the structure of macro-assembler, the functions of macro

pre-processor and the conventional assembler are merged. After merging, the functions are

structured into passes of the macro assembler.

115

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

ASSEMBLER AND DEBUGGING COMMANDS

116

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

PROGRAMS ON 8086 MASM

117

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Commands to be followed

mount c c:\masm

edit pgmname.asm

masm pgmname.asm

link pgmname.obj

debug pgmname.exe

118

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.18

BASIC ARITHMETIC OPERATIONS (16 bit and 32 bit)

AIM

Write a program to perform basic arithmetic operations (bith 16 and 32 bit)

16 BIT ADDITION

PROGRAM

DATA SEGMENT

N1 DW 1731H

N2 DW 9212H

N3 DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS :CODE;DS:DATA

START:

 MOV AX,DATA

 MOV DS,AX

 XOR AX,AX

 MOV BX,AX

 MOV AX,N1

 ADD AX,N2

 MOV N3,AX

 JNC STOP

 INC BX

STOP:

 MOV CX,AX

119

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 MOV AH,4CH

 INT 21H

CODE ENDS

END START

OUTPUT

32 BIT ADDITION

PROGRAM

DATA SEGMENT

LIST DD 12121212H,12121212H

N3 DW ?

N4 DW ?

DATA ENDS

CODE SEGMENT

120

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

ASSUME CS :CODE;DS:DATA

START:

 MOV AX,DATA

 MOV DS,AX

 XOR AX,AX

 MOV CL,AL

 MOV AX,[SI]

 ADD AX,[SI+4]

 MOV BX,AX

 MOV N3,BX

 MOV AX,[SI+2]

 ADD AX,[SI+6]

 MOV DX,AX

 MOV N4,DX

 JNC STOP

 INC CL

STOP:

 MOV AX,4CH

 INT 21H

CODE ENDS

END START

OUTPUT

121

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

16 BIT SUBTRACTION

PROGRAM

DATA SEGMENT

N1 DW 8888H

N2 DW 4444H

N3 DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS :CODE;DS:DATA

START:

 MOV AX,DATA

 MOV DS,AX

 XOR AX,AX

 MOV BX,AX

 MOV AX,N1

 SUB AX,N2

122

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

 MOV N3,AX

 JNC STOP

 INC BX

STOP:

 MOV CX,AX

 MOV AH,4CH

 INT 21H

CODE ENDS

END START

OUTPUT

32 BIT SUBTRACTION

PROGRAM

DATA SEGMENT

LIST DD 12121212H,12121212H

N3 DW ?

123

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

N4 DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS :CODE;DS:DATA

START:

 MOV AX,DATA

 MOV DS,AX

 XOR AX,AX

 MOV CL,AL

 MOV AX,[SI]

 ADD AX,[SI+4]

 MOV BX,AX

 MOV N3,BX

 MOV AX,[SI+2]

 ADD AX,[SI+6]

 MOV DX,AX

 MOV N4,DX

 JNC STOP

 INC CL

STOP:

 MOV AX,4CH

 INT 21H

CODE ENDS

END START

OUTPUT

124

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

16 BIT MULTIPLICATION

PROGRAM

DATA SEGMENT

N1 DW 8888H

N2 DW 4444H

N3 DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS :CODE;DS:DATA

START:

 MOV AX,4343

 MOV BX,1111

 INT 3

CODE ENDS

125

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

END START

OUTPUT

126

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.19

STRING DISPLAY

AIM

Write a program to display a given string

PROGRAM

DATA SEGMENT

MSG1 DB "HELLO WORLD$"

DATA ENDS

ASSUME CS:CODE; DS:DATA

CODE SEGMENT

START:

 MOV AX,DATA

 MOV DS,AX

 MOV DX,OFFSET MSG1

 MOV AH,09H

 INT 21H

 MOV AH,4CH

 MOV AL,00H

 INT 21H

CODE ENDS

END START

OUTPUT

127

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

128

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.20

STRING CONCATENATE

AIM

Write a program to concatenate two strings

PROGRAM

DATA SEGMENT

MSG1 DB "HELLO$"

MSG2 DB "WORLD$"

DATA ENDS

ASSUME CS:CODE; DS:DATA

CODE SEGMENT

START:

 MOV AX,DATA

 MOV DS,AX

 MOV DX,OFFSET MSG1

 MOV AH,09H

 INT 21H

 MOV DX,OFFSET MSG2

 MOV AH,09H

 INT 21H

CODE ENDS

END START

OUTPUT

129

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

130

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.21

SORTING

AIM

Write a program to perform sorting

PROGRAM

DATA SEGMENT

STRING1 DB 99H,12H,56H,45H,36H

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV CH,04H

UP2: MOV CL,04H

LEA SI,STRING1

UP1:MOV AL,[SI]

MOV BL,[SI+1]

CMP AL,BL

JNC DOWN

MOV DL,[SI+1]

XCHG [SI],DL

MOV [SI+1],DL

DOWN: INC SI

131

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

DEC CL

JNZ UP1

DEC CH

JNZ UP2

INT 3

CODE ENDS

END START

OUTPUT

132

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.22

SEARCHING

AIM

Write a program to perform searching

PROGRAM

DATA SEGMENT

STRING1 DB 11H,22H,33H,44H,55H

MSG1 DB "FOUND$"

MSG2 DB "NOT FOUND$"

SE DB 33H

DATA ENDS

PRINT MACRO MSG

MOV AH, 09H

LEA DX, MSG

INT 21H

INT 3

ENDM

CODE SEGMENT

ASSUME CS:CODE, DS:DATA

START:

MOV AX, DATA

MOV DS, AX

MOV AL, SE

133

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

LEA SI, STRING1

MOV CX, 04H

UP:

MOV BL,[SI]

CMP AL, BL

JZ FO

INC SI

DEC CX

JNZ UP

PRINT MSG2

JMP END1

FO:

PRINT MSG1

END1:

INT 3

CODE ENDS

END START

OUTPUT

134

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

135

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

8086

16 bit addition

16 bit subtraction

BCD to hexadecimal conversion

Sorting in ascending order

PROGRAMS ON 8086 TRAINER KIT

136

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.23

ADDITION-16 BIT

AIM

Write a program to perform addition of two 16 bit numbers

PROGRAM

ADDRESS MNEMONICS

0400 AND AX,0000

0403 MOV BX,0600

0406 MOV SI,0500

0409 MOV DI,0550

040C MOV AX,[SI]

040E MOV AX,[DI]

0410 MOV [BX],AX

0412 MOV AX,0000

0415 ADC AX,0000

0418 MOV [BX+2],AX

041B HLT

INPUT

ADDRESS VALUE

0500 B5

0501 7A

0550 2A

0551 E6

OUTPUT

ADDRESS VALUE

0600 DF

0601 5F

0602 01

137

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.24

SUBTRACTION-16 BIT

AIM

Write a program to perform subtraction of two 16 bit numbers

PROGRAM

ADDRESS MNEMONICS

0400 CLC

0401 MOV BX,0900

0404 MOV SI,0700

0407 MOV DI,0800

040A MOV AX,[SI]

040C SSB AX,[DI]

040E MOV [BX],AX

0410 HLT

INPUT

ADDRESS VALUE

0700 18

0701 08

0800 40

0801 10

OUTPUT

ADDRESS VALUE

0900 D8

0901 F7

138

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.25

MULTIPLICATION-16 BIT

AIM

Write a program to perform multiplication of two 16 bit numbers

PROGRAM

ADDRESS MNEMONICS

2000 MOV AX, [3000]

2004 MOV BX, [3002]

2008 MUL BX

200A MOV [3004], AX

200E MOV AX, DX

2010 MOV [3006], AX

2014 HLT

2000 MOV AX, [3000]

INPUT

ADDRESS VALUE

3003 07

3002 08

3001 04

3000 03

OUTPUT

ADDRESS VALUE

3007 00

3006 1C

3005 35

3004 18

139

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.26

SORTING-ASCENDING (check descending from the maual)

AIM

Write a program to perform sorting

PROGRAM

ADDRESS MNEMONICS

400 MOV SI, 500

403 MOV CL, [SI]

405 DEC CL

407 MOV SI, 500

40A MOV CH, [SI]

40C DEC CH

40E INC SI

40F MOV AL, [SI]

411 INC SI

412 CMP AL, [SI]

414 JC 41C

416 XCHG AL, [SI]

418 DEC SI

419 XCHG AL, [SI]

41B INC SI

41C DEC CH

41E JNZ 40F

420 DEC CL

422 JNZ 407

424 HLT

140

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

INPUT

ADDRESS VALUE

500 04

501 F9

502 F2

503 39

504 05

OUTPUT

ADDRESS VALUE

501 05

502 39

503 F2

504 F9

141

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.26

BCD TO HEXADECIMAL

AIM

Write a program to perform conversion of 8 bit BCD number into hexadecimal number

PROGRAM

ADDRESS MNEMONICS

400 MOV SI, 500

403 MOV DI, 600

406 MOV BL, [SI]

408 AND BL, 0F

040A MOV AL, [SI]

040C AND AL, F0

040E MOV CL, 04

410 ROR AL, CL

412 MOV DL, 0A

414 MUL DL

416 ADD AL, BL

418 MOV [DI], AL

041A HLT

INPUT

ADDRESS VALUE

500 25

OUTPUT

ADDRESS VALUE

600 19

142

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.27

ASCII TO BCD

AIM

Write a program to perform conversion of ASCII(in hex) value of number to its BCD(decimal)

number

ASCII (in Hex) 30 31 32 33 34 35 36 37 38 39

BCD 00 01 02 03 04 05 06 07 08 09

PROGRAM

MOV AL,[2050]

AND AL,0F

MOV [3050],AL

HLT

INPUT

ADDRESS VALUE

2050 39

OUTPUT

ADDRESS VALUE

3050 09

143

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.28

BCD TO ASCII

AIM

Write a program to perform conversion of 8 bit BCD number to ASCII code

PROGRAM

ADDRESS MNEMONICS

400 MOV AL, [2000]

404 MOV AH, AL

406 AND AL, 0F

408 MOV CL, 04

40A SHR AH, CL

40C OR AX, 3030

40F MOV [3000], AX

413 HLT

INPUT

ADDRESS VALUE

2000 98

OUTPUT

ADDRESS VALUE

3000 38

3001 39

144

System Software and Microprocessors Lab CSL 331- Lab Manual, Semester 5, CSE Dept., JCET

Pgm.No.29

SEARCHING

AIM

Write a program to search a number or character from a string

PROGRAM

